使用paddle写出一个用于语义分割的FCN16s模型
时间: 2023-12-29 08:05:29 浏览: 80
采用paddle框架自定制一维卷积神经网络对西储大学轴承数据集进行故障识别(复现于基于卷积神经网络的轴承故障诊断算法研究的论文)
好的,以下是使用PaddlePaddle实现的FCN16s模型:
```python
import paddle
import paddle.nn as nn
class FCN16s(nn.Layer):
def __init__(self, num_classes=21):
super(FCN16s, self).__init__()
# 第一段
self.conv1_1 = nn.Conv2D(in_channels=3, out_channels=64, kernel_size=3, padding=100)
self.relu1_1 = nn.ReLU()
self.conv1_2 = nn.Conv2D(in_channels=64, out_channels=64, kernel_size=3, padding=1)
self.relu1_2 = nn.ReLU()
self.pool1 = nn.MaxPool2D(kernel_size=2, stride=2, ceil_mode=True)
# 第二段
self.conv2_1 = nn.Conv2D(in_channels=64, out_channels=128, kernel_size=3, padding=1)
self.relu2_1 = nn.ReLU()
self.conv2_2 = nn.Conv2D(in_channels=128, out_channels=128, kernel_size=3, padding=1)
self.relu2_2 = nn.ReLU()
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2, ceil_mode=True)
# 第三段
self.conv3_1 = nn.Conv2D(in_channels=128, out_channels=256, kernel_size=3, padding=1)
self.relu3_1 = nn.ReLU()
self.conv3_2 = nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, padding=1)
self.relu3_2 = nn.ReLU()
self.conv3_3 = nn.Conv2D(in_channels=256, out_channels=256, kernel_size=3, padding=1)
self.relu3_3 = nn.ReLU()
self.pool3 = nn.MaxPool2D(kernel_size=2, stride=2, ceil_mode=True)
# 第四段
self.conv4_1 = nn.Conv2D(in_channels=256, out_channels=512, kernel_size=3, padding=1)
self.relu4_1 = nn.ReLU()
self.conv4_2 = nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, padding=1)
self.relu4_2 = nn.ReLU()
self.conv4_3 = nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, padding=1)
self.relu4_3 = nn.ReLU()
self.pool4 = nn.MaxPool2D(kernel_size=2, stride=2, ceil_mode=True)
# 第五段
self.conv5_1 = nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, padding=1)
self.relu5_1 = nn.ReLU()
self.conv5_2 = nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, padding=1)
self.relu5_2 = nn.ReLU()
self.conv5_3 = nn.Conv2D(in_channels=512, out_channels=512, kernel_size=3, padding=1)
self.relu5_3 = nn.ReLU()
self.pool5 = nn.MaxPool2D(kernel_size=2, stride=2, ceil_mode=True)
# FCN层
self.fc6 = nn.Conv2D(in_channels=512, out_channels=4096, kernel_size=7)
self.relu6 = nn.ReLU()
self.drop6 = nn.Dropout(p=0.5)
self.fc7 = nn.Conv2D(in_channels=4096, out_channels=4096, kernel_size=1)
self.relu7 = nn.ReLU()
self.drop7 = nn.Dropout(p=0.5)
self.score_fr = nn.Conv2D(in_channels=4096, out_channels=num_classes, kernel_size=1)
self.upscore = nn.Conv2DTranspose(in_channels=num_classes, out_channels=num_classes, kernel_size=32, stride=16, bias_attr=False)
def forward(self, x):
# 第一段
x = self.conv1_1(x)
x = self.relu1_1(x)
x = self.conv1_2(x)
x = self.relu1_2(x)
x = self.pool1(x)
# 第二段
x = self.conv2_1(x)
x = self.relu2_1(x)
x = self.conv2_2(x)
x = self.relu2_2(x)
x = self.pool2(x)
# 第三段
x = self.conv3_1(x)
x = self.relu3_1(x)
x = self.conv3_2(x)
x = self.relu3_2(x)
x = self.conv3_3(x)
x = self.relu3_3(x)
x = self.pool3(x)
pool3_out = x
# 第四段
x = self.conv4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.relu4_2(x)
x = self.conv4_3(x)
x = self.relu4_3(x)
x = self.pool4(x)
pool4_out = x
# 第五段
x = self.conv5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.relu5_2(x)
x = self.conv5_3(x)
x = self.relu5_3(x)
x = self.pool5(x)
# FCN层
x = self.fc6(x)
x = self.relu6(x)
x = self.drop6(x)
x = self.fc7(x)
x = self.relu7(x)
x = self.drop7(x)
x = self.score_fr(x)
x = self.upscore(x, output_size=pool4_out.shape[-2:])
pool4_out = 0.01 * pool4_out
x = paddle.add(x, pool4_out)
x = self.upscore(x, output_size=pool3_out.shape[-2:])
pool3_out = 0.0001 * pool3_out
x = paddle.add(x, pool3_out)
x = self.upscore(x, output_size=x.shape[-2:])
return x
```
这里使用了PaddlePaddle的`nn`模块实现了FCN16s模型。在forward方法中,我们按照FCN16s网络结构的方式依次进行了前向计算。其中,我们使用了反卷积(`Conv2DTranspose`)对特征图进行上采样,并使用了跳跃连接(skip connection)将浅层特征和深层特征结合起来进行分割任务。
阅读全文