eigen 求解ax=xb

时间: 2023-08-17 11:02:36 浏览: 82
Eigen是一个用于数值线性代数计算的C++模板库,其中包含了许多求解线性方程的算法。在Eigen中,可以使用以下代码来求解方程ax = xb: ```cpp #include <Eigen/Dense> int main() { // 定义矩阵a和b Eigen::MatrixXd a = Eigen::MatrixXd::Random(3, 3); Eigen::MatrixXd b = Eigen::MatrixXd::Random(3, 3); // 定义向量x Eigen::VectorXd x(3); // 使用Eigen提供的API求解方程 Eigen::GeneralizedEigenSolver<Eigen::MatrixXd> solver(a, b); x = solver.eigenvalues().real(); // 打印解向量x std::cout << "解向量x为:" << x << std::endl; return 0; } ``` 以上代码首先定义了两个3x3的随机矩阵a和b,然后定义了一个3维向量x。接着,使用Eigen提供的GeneralizedEigenSolver求解器,并将矩阵a和b作为参数传入。最后,将求解结果存储在向量x中,并通过输出语句打印解向量x。 需要注意的是,以上代码只是一个简单的示例,实际应用中可能需要对输入数据进行处理和验证,以确保求解的正确性。
相关问题

eigen求解线性方程组示例

Eigen是一个C++的线性代数库,可以用于求解线性方程组。下面是一个使用Eigen求解线性方程组的示例: ```cpp #include <iostream> #include <Eigen/Dense> int main() { // 定义系数矩阵A和常数向量b Eigen::Matrix3d A; Eigen::Vector3d b; A << 1, 2, 3, 4, 5, 6, 7, 8, 10; b << 3, 6, 9; // 求解线性方程组Ax = b Eigen::Vector3d x = A.colPivHouseholderQr().solve(b); // 输出解x std::cout << "Solution:\n" << x << std::endl; return 0; } ``` 在这个示例中,我们首先定义了一个3x3的系数矩阵A和一个长度为3的常数向量b。然后使用`colPivHouseholderQr().solve(b)`来求解线性方程组Ax = b,其中`colPivHouseholderQr()`是一种求解方法,可以根据实际情况选择其他的求解方法。最后输出了求解得到的解x。

使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)

#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { std::vector<double> eigen_list; MatrixXd data(6, 6); data << 1, 2, 4, 7, 6, 3, 3, 20, 1, 2, 5, 4, 2, 0, 1, 5, 8, 6, 5, 3, 3, 6, 3, 2, 6, 0, 5, 2, 19, 3, 5, 2, 4, 9, 6, 3; MatrixXd g_csi_corr = data.transpose() * data / 6.0; EigenSolver<MatrixXd> es(g_csi_corr); VectorXd eigenvalue = es.eigenvalues().real(); std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl; eigen_list.push_back(eigenvalue.maxCoeff()); eigen_list.push_back(1.22); eigen_list.push_back(-54.21); eigen_list.push_back(8.44); eigen_list.push_back(-27.83); eigen_list.push_back(33.12); //eigen_list.push_back(40.29); std::cout << "eigen_list: "; for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it) std::cout << *it << " "; std::cout << std::endl; int num1 = eigen_list.size(); MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1); VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose(); VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose(); double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff()); VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff()); double tri_threshold = eigen_a5.mean(); std::cout << "tri_threshold: " << tri_threshold << std::endl; return 0; }

相关推荐

最新推荐

recommend-type

C++调用Eigen库技巧的直观理解.docx

C++调用Eigen库技巧的直观理解 包含常用的Eigen库函数及使用方法
recommend-type

C++ Eigen库计算矩阵特征值及特征向量

主要为大家详细介绍了C++ Eigen库计算矩阵特征值及特征向量,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di