解释下面这段代码:def get_batch_edge_index(org_edge_index, batch_num, node_num): # org_edge_index:(2, edge_num) edge_index = org_edge_index.clone().detach() edge_num = org_edge_index.shape[1] batch_edge_index = edge_index.repeat(1,batch_num).contiguous() for i in range(batch_num): batch_edge_index[:, i*edge_num:(i+1)*edge_num] += i*node_num return batch_edge_index.long()
时间: 2023-06-03 13:04:35 浏览: 175
这段代码定义了一个名为"get_batch_edge_index"的函数,它接受三个参数:org_edge_index、batch_num和node_num。org_edge_index是图的原始边索引,batch_num是图中子图(或批次)的数量,node_num是图中节点的数量。
该函数的作用是将原始边索引进行分批处理,以便在批量执行图神经网络(GNN)训练时,每个批次都有一个对应的边索引。具体来说,该函数会将原始边索引按批次分组,然后对每个批次中的边进行编号,以便在GNN训练期间能够追踪每批次之间的边。
该函数的返回值是一个形状为(2, num_edges)的张量,其中第一行表示源节点,第二行表示目标节点。在每个批次内,边统一按编号排序。
相关问题
def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out
这是一个PyTorch模型的前向传播函数,它接受两个参数:data和org_edge_index。该函数使用GCN(图卷积神经网络)来处理输入数据,并返回一个输出张量。具体实现细节可以参考代码中的注释。
阅读全文