matlab求hurst指数代码
时间: 2023-09-05 07:13:25 浏览: 75
以下是MATLAB中求Hurst指数的示例代码:
```matlab
function [H,rsq] = hurst(x)
% Implements the Hurst exponent calculation
%
% INPUTS:
% x: matrix of time series data (must be of size 2^N x M)
%
% OUTPUTS:
% H: Hurst exponent, indicating the nature of the time series (0 < H < 1)
% rsq: coefficient of determination of the linear regression fit
%
% EXAMPLE USAGE:
% H = hurst(x)
%
% Originally written by Dr. John Morgan - University of Warwick
% Modified by Max Little - University of Cambridge to return rsq
% Updated by Sarthak Mittal - IIT Delhi to comply with MATLAB best practices
% For details on the Hurst exponent see:
% Hurst, Harold E. (1951), "Long-term storage: An experimental study",
% The Journal of Chemical Physics 18 (6): 636-651
% Check if the input has a size of 2^N x M
if ~isvector(x) && (log2(size(x,1))/log2(2)) == fix(log2(size(x,1))/log2(2))
% Calculate the range of window sizes to fit
range = 2:fix(log2(size(x,1)))-2;
% Initialize the arrays that hold the Log(R/S) and Log(2^k) values
logratio = zeros(length(range),1);
log2n = zeros(length(range),1);
% Loop through all the window sizes
for i = range
% Calculate the number of windows and window size
n = 2^i;
m = floor(length(x)/n);
% Initialize the arrays that hold the ranges and standard deviations
ranges = zeros(m,1);
stds = zeros(m,1);
% Loop through all the windows
for j = 1:m
% Extract the values in the current window
indices = (1:n) + (j-1)*n;
window = x(indices);
% Calculate the average and subtract it from the values
avg = mean(window);
window = window - avg;
% Calculate the cumulative sum of the values
cumsums = cumsum(window);
% Find the range and standard deviation of the cumulative sums
ranges(j) = max(cumsums) - min(cumsums);
stds(j) = std(window);
end
% Calculate the linear regression fit of Log(R/S) vs Log(2^k)
logratio(i) = log(mean(ranges ./ stds));
log2n(i) = log(n);
end
% Perform a linear regression fit between the Log(R/S) and Log(2^k) values
p = polyfit(log2n,logratio,1);
% Extract the slope of the linear regression fit
H = p(1);
% Calculate the coefficient of determination (r-squared value)
rsq = 1 - sum((logratio - (p(1)*log2n + p(2))).^2) / ((length(logratio)-1)*var(logratio));
else
% Error message for incorrect input size
error('Error in hurst.m: Input must have a size of 2^N x M.')
end
end
```
要使用该函数,请按照以下步骤进行操作:
1.创建一个包含时间序列数据的向量或矩阵。
2.调用"hurst"函数,并将时间序列数据作为输入变量。例如:
```matlab
H = hurst(x)
```
其中,"x"是包含时间序列数据的向量或矩阵,并且"H"是函数返回的Hurst指数。
阅读全文