images = [cv2.resize(cv2.imread(file), (224, 224)) for file in glob.glob(glob_dir)]

时间: 2024-04-20 19:25:14 浏览: 7
这行代码使用了OpenCV库(cv2)来读取和调整图像的大小。首先,它使用glob库中的glob函数来匹配指定目录(glob_dir)下的所有文件。然后,对于每个匹配的文件,它使用cv2.imread函数来读取图像,并使用cv2.resize函数将图像的大小调整为(224, 224)像素。最后,将调整大小后的图像存储在一个列表(images)中。 换句话说,这行代码的作用是批量读取指定目录下的图像文件,并将它们调整为(224, 224)像素大小。
相关问题

input_dir = 'D:/wjd/13' glob_dir = input_dir + '/*.png' images = [cv2.resize(cv2.imread(file), (224, 224)) for file in glob.glob(glob_dir)] paths = [file for file in glob.glob(glob_dir)] images = np.array(np.float32(images).reshape(len(images), -1) / 255)

这段代码的作用是读取指定目录下的所有PNG图像文件,并将它们调整为尺寸为224x224的图像。 首先,通过定义`input_dir`变量指定了图像文件所在的目录路径。然后,通过将`input_dir`和`/*.png`拼接,形成一个通配符路径`glob_dir`,用于匹配目录下所有的PNG文件。 接下来,使用列表推导式结合OpenCV库的`cv2.imread()`函数读取每个匹配到的PNG文件,并使用`cv2.resize()`函数将它们调整为尺寸为224x224的图像。这些图像被存储在名为`images`的列表中。 同时,使用列表推导式将每个匹配到的文件路径存储在名为`paths`的列表中。 最后,将`images`列表转换为NumPy数组,并进行归一化处理,将像素值从0到255的范围缩放至0到1之间。 综上所述,该段代码实现了读取指定目录下PNG图像文件并进行尺寸调整和归一化处理的功能。

import cv2 import glob import numpy as np imgs = glob.glob("maze.png") res, L, N = [], 256, 5 for i in imgs: img = cv2.imread(i) img = cv2.resize(img, (512, 512)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV) # contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) max_contour = max(contours, key=cv2.contourArea) epsilon = 0.1 * cv2.arcLength(max_contour, True) approx = cv2.approxPolyDP(max_contour, epsilon, True) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=15, minRadius=5, maxRadius=15) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 0, 255), 2) # edges = cv2.Canny(gray, 100, 200) contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: center, (width, height), angle = cv2.minAreaRect(contour) if -5 <= (width - height) <= 5 and 30 <= width <= 50: cv2.drawContours(img, [contour], -1, (0, 0, 255), 3) res.append(cv2.resize(img, (L, L))) resImg = np.zeros((L * N, L * N, 3), dtype=np.uint8) for i, img in enumerate(res): row, col = i // N, i % N x, y = col * L, row * L resImg[y:y + L, x:x + L] = img cv2.imshow("", resImg) cv2.waitKey(0) cv2.destroyAllWindows()帮我加上详细注释

好的,以下是添加了详细注释的代码: ```python import cv2 import glob import numpy as np # 获取所有maze.png图片的路径 imgs = glob.glob("maze.png") # 定义每个小图像的尺寸和每行、每列的小图像数量 res, L, N = [], 256, 5 for i in imgs: # 读取图片并调整大小 img = cv2.imread(i) img = cv2.resize(img, (512, 512)) # 将图片转化为灰度图,并进行二值化处理 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV) # 找到图像中的所有轮廓,并选择面积最大的轮廓进行逼近处理 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) max_contour = max(contours, key=cv2.contourArea) epsilon = 0.1 * cv2.arcLength(max_contour, True) approx = cv2.approxPolyDP(max_contour, epsilon, True) # 检测图像中的圆形,并在圆形周围画出红色圆圈 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=15, minRadius=5, maxRadius=15) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 0, 255), 2) # 进行边缘检测,并再次找到图像中的所有轮廓 edges = cv2.Canny(gray, 100, 200) contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: center, (width, height), angle = cv2.minAreaRect(contour) # 判断最小外接矩形的长宽比是否在一定范围内,如果满足条件,则在轮廓周围画出红色矩形 if -5 <= (width - height) <= 5 and 30 <= width <= 50: cv2.drawContours(img, [contour], -1, (0, 0, 255), 3) # 将处理后的图片添加进一个列表中 res.append(cv2.resize(img, (L, L))) # 将所有图片通过numpy模块拼接成一个大图展示 resImg = np.zeros((L * N, L * N, 3), dtype=np.uint8) for i, img in enumerate(res): row, col = i // N, i % N x, y = col * L, row * L resImg[y:y + L, x:x + L] = img cv2.imshow("", resImg) cv2.waitKey(0) cv2.destroyAllWindows() ``` 希望这份注释对您有所帮助!

相关推荐

def main(): src_dir='./data/' save_dir = './data/train' src_dir_test='./data/test' save_dir_test = './data/test' filepaths = glob.glob(src_dir + '/*.jpg') filepaths_test = glob.glob(src_dir_test + '/*.jpg') def sortKeyFunc(s): return int(os.path.basename(s)[:-4]) filepaths_test.sort(key=sortKeyFunc) filepaths.sort(key=sortKeyFunc) print("[*] Reading train files...") if not os.path.exists(save_dir): os.mkdir(save_dir) os.mkdir(save_dir_test) os.mkdir('./data/train/noisy') os.mkdir('./data/train/original') os.mkdir('./data/test/noisy') os.mkdir('./data/test/original') print("[*] Applying noise...") sig = np.linspace(0,50,len(filepaths)) np.random.shuffle(sig) sig_test = np.linspace(0,50,len(filepaths_test)) np.random.shuffle(sig_test) for i in xrange(len(filepaths)): image = cv2.imread(filepaths[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir, "noisy/%04d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir, "original/%04d.png" %i), image) for i in xrange(len(filepaths_test)): image = cv2.imread(filepaths_test[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir_test, "noisy/%d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir_test, "original/%d.png" %i), image) print("[*] Noisy and original images saved") if __name__ == "__main__": main()

最新推荐

recommend-type

python cv2.resize函数high和width注意事项说明

主要介绍了python cv2.resize函数high和width注意事项说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python OpenCV之图片缩放的实现(cv2.resize)

主要介绍了Python OpenCV之图片缩放的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望