keras实现multi-head self-attention代码
时间: 2023-05-20 10:03:36 浏览: 117
collaborative-attention:多头注意力代码
5星 · 资源好评率100%
以下是使用 Keras 实现 Multi-Head Self-Attention 的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Layer, Dense, Dropout, LayerNormalization
class MultiHeadSelfAttention(Layer):
def __init__(self, num_heads, head_size, dropout_rate=0.1, **kwargs):
super(MultiHeadSelfAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.head_size = head_size
self.dropout_rate = dropout_rate
self.query_dense = Dense(num_heads * head_size, use_bias=False)
self.key_dense = Dense(num_heads * head_size, use_bias=False)
self.value_dense = Dense(num_heads * head_size, use_bias=False)
self.dropout = Dropout(dropout_rate)
self.output_dense = Dense(head_size, use_bias=False)
self.layer_norm = LayerNormalization()
def call(self, inputs):
q = self.query_dense(inputs)
k = self.key_dense(inputs)
v = self.value_dense(inputs)
q = tf.reshape(q, [-1, tf.shape(q)[1], self.num_heads, self.head_size])
k = tf.reshape(k, [-1, tf.shape(k)[1], self.num_heads, self.head_size])
v = tf.reshape(v, [-1, tf.shape(v)[1], self.num_heads, self.head_size])
q = tf.transpose(q, [0, 2, 1, 3])
k = tf.transpose(k, [0, 2, 1, 3])
v = tf.transpose(v, [0, 2, 1, 3])
attention_scores = tf.matmul(q, k, transpose_b=True)
attention_scores = attention_scores / tf.math.sqrt(tf.cast(self.head_size, tf.float32))
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
attention_probs = self.dropout(attention_probs)
context = tf.matmul(attention_probs, v)
context = tf.transpose(context, [0, 2, 1, 3])
context = tf.reshape(context, [-1, tf.shape(context)[1], self.num_heads * self.head_size])
output = self.output_dense(context)
output = self.dropout(output)
output = self.layer_norm(inputs + output)
return output
```
这个类可以用于 Transformer 等模型中。
阅读全文