norm_layer: instance什么意思
时间: 2023-09-29 19:04:59 浏览: 226
"instance"在机器学习中通常指的是"实例归一化(Instance Normalization)"。它是一种归一化技术,用于将一批数据中的每个样本(即实例)进行归一化处理,使其具有零均值和单位方差。在神经网络中,实例归一化通常应用于卷积神经网络(CNN)或生成对抗网络(GAN)等模型中,以帮助提高模型的性能和稳定性。实例归一化与批归一化(Batch Normalization)相比,更适合对不同样本之间的特征分布进行归一化处理。
相关问题
class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method 根据以上代码,请告诉我PointnetSAModuleMSG输出张量的通道数由什么决定?
PointnetSAModuleMSG输出张量的通道数由mlps参数中的每个列表中的元素数量决定。每个列表中的元素数量指定了在每个球形区域池化之后应该应用的卷积层的数量。这些卷积层将处理每个球形区域中的点的特征,并将它们合并成一个输出特征向量。因此,输出张量的通道数将等于mlps参数中所有列表中的元素数量之和。
class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method我想将以上模块输出的张量的shape在模块尾部打印出来方便检查,你可以提供详细的代码吗?
当一个模块被调用时,可以使用`print()`函数将张量的shape打印出来。在这个例子中,我们可以在`forward()`函数中添加一个打印语句来打印输出的张量的shape。
以下是修改后的代码:
```python
class PointnetSAModuleMSG(_PointnetSAModuleBase):
"""Pointnet set abstraction layer with multiscale grouping"""
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
"""
:param npoint: int
:param radii: list of float, list of radii to group with
:param nsamples: list of int, number of samples in each ball query
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
:param bn: whether to use batchnorm
:param use_xyz:
:param pool_method: max_pool / avg_pool
:param instance_norm: whether to use instance_norm
"""
super().__init__()
assert len(radii) == len(nsamples) == len(mlps)
self.npoint = npoint
self.groupers = nn.ModuleList()
self.mlps = nn.ModuleList()
for i in range(len(radii)):
radius = radii[i]
nsample = nsamples[i]
self.groupers.append(
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
)
mlp_spec = mlps[i]
if use_xyz:
mlp_spec[0] += 3
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
self.pool_method = pool_method
def forward(self, xyz, features=None):
"""
:param xyz: (B, N, 3) xyz coordinates of the features
:param features: (B, N, C) descriptors of the features
:return: (B, npoint, \sum_k(mlps[k][-1])) tensor of the global features for the set
"""
# Set Abstraction
xyz_flipped = xyz.transpose(1, 2).contiguous()
new_xyz = None
if self.npoint is not None:
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.npoint) # (B, npoint)
new_xyz = pointnet2_utils.gather_operation(xyz_flipped, fps_idx).transpose(1, 2).contiguous() if xyz is not None else None # (B, 3, npoint)
else:
new_xyz = None
# Grouping
new_features_list = []
for i in range(len(self.groupers)):
grouper = self.groupers[i]
new_features = grouper(new_xyz, xyz, features) # (B, C, npoint, nsample)
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint)
if self.pool_method == 'max_pool':
new_features = new_features.max(dim=-1)[0] # (B, mlp[-1])
elif self.pool_method == 'avg_pool':
new_features = new_features.mean(dim=-1) # (B, mlp[-1])
new_features_list.append(new_features)
return torch.cat(new_features_list, dim=1)
```
现在,当你调用这个模块并传入输入张量时,你将在控制台中看到shape的输出。
阅读全文