执行一个中断,函数Sec_Loop中变量的值变成了多少

时间: 2024-02-26 17:51:51 浏览: 24
在上述代码中,`Sec_Loop()`函数中有两个变量:`minisec`和`flag`。 在中断服务程序`Timer0_Routine()`中,每经过20次定时器0中断,即100毫秒,就会调用一次`Sec_Loop()`函数。在`Sec_Loop()`函数中,首先判断`flag`标志是否被设置。如果被设置,则每次调用都会将`minisec`加1。 因此,如果在定时器0中断触发前,`flag`标志被设置,那么每经过20次定时器0中断,`minisec`的值就会增加20。如果在定时器0中断触发前,`flag`标志未被设置,那么`minisec`的值保持不变。 需要注意的是,在`Sec_Loop()`函数中,当`minisec`的值达到100时,会将其归零并将`sec`加1。因此,如果`minisec`的值增加到超过100,那么`minisec`会在下一个定时器0中断触发时被重置为0,并且`sec`的值会增加1。 而在`Sec_Loop()`函数中并没有对`flag`标志进行修改操作,因此该标志的值不会受到`Sec_Loop()`函数的影响,仍然保持原来的值。
相关问题

能用时序结构讲解上述代码吗

当定时器0的计数器达到设定值时,将会自动触发定时器0中断。在中断服务程序`Timer0_Routine()`中,首先需要对定时器0进行初始化: ``` TL0 = 0x18; //设置定时器0的初值为0x18FC(65536-5000) TH0 = 0xFC; ``` 然后,在每次定时器0中断触发时,都会执行一次`Timer0_Routine()`函数。其中,需要使用一个静态变量`T0Count2`来记录定时器0中断触发的次数,从而实现对时间的计数: ``` static unsigned int T0Count2; T0Count2++; ``` 当`T0Count2`达到20时(即经过20次定时器0中断),调用`Sec_Loop()`函数进行计时: ``` if (T0Count2 >= 20) { T0Count2 = 0; Sec_Loop(); } ``` 在`Sec_Loop()`函数中,首先判断`flag`标志是否被设置。如果被设置,则每次调用都会将`minisec`加1。当`minisec`达到100时,将其归零并将`sec`加1。当`sec`达到60时,将其归零并将`min`加1。当`min`达到60时,将其归零。因此,`Sec_Loop()`函数实现了对时间的计数和累加。 最后,在主函数中需要开启定时器0中断: ``` EA = 1; //开启总中断 ET0 = 1; //开启定时器0中断 ``` 这样,定时器0中断就可以周期性地触发,并执行`Timer0_Routine()`函数和`Sec_Loop()`函数进行计时。

设计一个0.01秒精度的秒表,从00.00秒~19.99秒循环正计时并显示在数码管上

好的,我可以为您提供一个基于Arduino的秒表设计方案。您需要使用一个Arduino开发板、一个4位数码管、一个按键和一些电线。 首先,您需要将数码管连接到Arduino开发板上。将数码管的每个引脚连接到Arduino的数字引脚上,并将共阳极连接到5V电源上。然后,将按键连接到数字引脚2上,并将其它端口连接到地线上。 接下来,您需要编写一个Arduino程序来控制秒表。您可以使用Arduino的计时器功能来实现0.01秒的精度。在程序中,您需要使用一个计数器变量来记录经过的时间,并将其转换为秒和毫秒。然后,您可以将秒和毫秒显示在数码管上。 以下是一个简单的Arduino程序示例: ``` #include <TimerOne.h> int count = 0; int seconds = 0; int milliseconds = 0; void setup() { Timer1.initialize(10000); // 0.01秒的计时器 Timer1.attachInterrupt(timerIsr); // 计时器中断 } void loop() { // 显示秒和毫秒 displayTime(seconds, milliseconds); // 等待按键 if (digitalRead(2) == HIGH) { // 重置计数器 count = 0; seconds = 0; milliseconds = 0; } } void timerIsr() { // 计时器中断处理函数 count++; milliseconds = count % 100; seconds = count / 100; if (seconds >= 20) { // 循环计时 seconds = 0; count = 0; } } void displayTime(int sec, int msec) { // 显示秒和毫秒 int digit1 = sec / 10; int digit2 = sec % 10; int digit3 = msec / 10; int digit4 = msec % 10; // 在数码管上显示数字 // ... } ``` 请注意,这只是一个简单的示例程序,您需要根据您的具体硬件和需求进行修改和优化。

相关推荐

解释以下代码bool ret = laser.initialize(); if (ret) { ret = laser.turnOn(); } else { RCLCPP_ERROR(node->get_logger(), "%s\n", laser.DescribeError()); } auto laser_pub = node->create_publisher<sensor_msgs::msg::LaserScan>("scan", rclcpp::SensorDataQoS()); auto stop_scan_service = [&laser](const std::shared_ptr<rmw_request_id_t> request_header, const std::shared_ptr<std_srvs::srv::Empty::Request> req, std::shared_ptr<std_srvs::srv::Empty::Response> response) -> bool { return laser.turnOff(); }; auto stop_service = node->create_service<std_srvs::srv::Empty>("stop_scan",stop_scan_service); auto start_scan_service = [&laser](const std::shared_ptr<rmw_request_id_t> request_header, const std::shared_ptr<std_srvs::srv::Empty::Request> req, std::shared_ptr<std_srvs::srv::Empty::Response> response) -> bool { return laser.turnOn(); }; auto start_service = node->create_service<std_srvs::srv::Empty>("start_scan",start_scan_service); rclcpp::WallRate loop_rate(20); while (ret && rclcpp::ok()) { LaserScan scan;// if (laser.doProcessSimple(scan)) { auto scan_msg = std::make_shared<sensor_msgs::msg::LaserScan>(); scan_msg->header.stamp.sec = RCL_NS_TO_S(scan.stamp); scan_msg->header.stamp.nanosec = scan.stamp - RCL_S_TO_NS(scan_msg->header.stamp.sec); scan_msg->header.frame_id = frame_id; scan_msg->angle_min = scan.config.min_angle; scan_msg->angle_max = scan.config.max_angle; scan_msg->angle_increment = scan.config.angle_increment; scan_msg->scan_time = scan.config.scan_time; scan_msg->time_increment = scan.config.time_increment; scan_msg->range_min = scan.config.min_range; scan_msg->range_max = scan.config.max_range; int size = (scan.config.max_angle - scan.config.min_angle)/ scan.config.angle_increment + 1; scan_msg->ranges.resize(size); scan_msg->intensities.resize(size); for(size_t i=0; i < scan.points.size(); i++) { int index = std::ceil((scan.points[i].angle - scan.config.min_angle)/scan.config.angle_increment); if(index >=0 && index < size) { scan_msg->ranges[index] = scan.points[i].range; scan_msg->intensities[index] = scan.points[i].intensity; } } laser_pub->publish(*scan_msg); } else { RCLCPP_ERROR(node->get_logger(), "Failed to get scan"); } if(!rclcpp::ok()) { break; } rclcpp::spin_some(node); loop_rate.sleep(); } RCLCPP_INFO(node->get_logger(), "[YDLIDAR INFO] Now YDLIDAR is stopping ......."); laser.turnOff(); laser.disconnecting(); rclcpp::shutdown(); return 0; }

最新推荐

recommend-type

LED点阵矩阵时钟3216

//*备注:此是我刚接触单片机时的一个小制作 程序和电路设计上难免有不足之处 请谅解 //===================================================================================// #include #include #define uchar...
recommend-type

电脑温度检测软件, 夏天的时候可以用用,不用安装那么多的臃肿软件

电脑温度检测软件, 夏天的时候可以用用,不用安装那么多的臃肿软件
recommend-type

基于SpringBoot的旅游网站的设计与实现

本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。本旅游网站系统采用的数据库是MYSQL,使用JSP技术开发,在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性
recommend-type

BTT0.mdl.z..._lan.zip

BTT0.mdl.z..._lan
recommend-type

C#调用adb传输和推送数据到安卓设备上.zip

C#调用adb传输和推送数据到安卓设备上
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。