self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2)的意思
时间: 2023-06-01 09:07:00 浏览: 125
这段代码是一个神经网络中的卷积层和最大池化层的定义,其中in_channels、out_channels、kernel_size、stride和padding分别表示输入通道数、输出通道数、卷积核大小、步长和填充大小。这段代码是一种对音频数据进行特征提取的常用方法。
相关问题
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=32, stride=8, padding=12) self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.BN = nn.BatchNorm1d(num_features=64) self.conv3_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool3_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool3_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1) self.pool3_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2) self.pool5_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2) self.pool5_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2) self.pool5_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.pool2 = nn.MaxPool1d(kernel_size=8, stride=1) self.fc = nn.Linear(in_features=256 * 3, out_features=4) ##这里的256*3是计算出来的 self.softmax = nn.Softmax(),解释各部分的作用和参数选择
这段代码定义了一个名为Net的类,继承了nn.Module类。在初始化函数中,它定义了多个一维卷积层(nn.Conv1d)、最大池化层(nn.MaxPool1d)、BN层(nn.BatchNorm1d)和全连接层(nn.Linear)。这些层用于构建神经网络模型。其中,卷积层、池化层和BN层用于特征提取,全连接层用于分类。此模型的输入是一个通道的一维数据,输出是四个类别的概率分布。
class Conv1D_Block(nn.Module): def __init__(self, in_channels=256, out_channels=512, kernel_size=3, dilation=1, norm='gln', causal=False): super(Conv1D_Block, self).__init__() # conv 1 x 1 self.conv1x1 = Conv1D(in_channels, out_channels, 1) self.PReLU_1 = nn.PReLU() self.norm_1 = select_norm(norm, out_channels) # not causal don't need to padding, causal need to pad+1 = kernel_size self.pad = (dilation * (kernel_size - 1)) // 2 if not causal else ( dilation * (kernel_size - 1)) # depthwise convolution self.dwconv = Conv1D(out_channels, out_channels, kernel_size, groups=out_channels, padding=self.pad, dilation=dilation) self.PReLU_2 = nn.PReLU() self.norm_2 = select_norm(norm, out_channels) self.Sc_conv = nn.Conv1d(out_channels, in_channels, 1, bias=True) self.causal = causal
这是一个用于语音信号处理的一维卷积神经网络模块。该模块包含了一个1x1卷积层,在PReLU激活函数和归一化层之后,接着是一个深度卷积层,也在PReLU激活函数和归一化层之后。最后,该模块包含了一个1x1卷积层,用于将输出通道数转换回输入通道数。如果该模块是因果的,则需要进行填充。该模块的参数包括输入通道数、输出通道数、卷积核大小、扩张率、归一化方式以及是否因果。
阅读全文