val &= ~(0x07<<8)详细解释一下

时间: 2024-03-29 18:37:18 浏览: 16
这段代码是对变量 val 进行位运算的操作。其中,符号 & 表示按位与运算,~ 表示按位取反运算。具体来说,这行代码的作用是将 val 的第8、9、10三个位清零,保留其他位的值不变。 先解释一下 ~(0x07<<8) 这个表达式。0x07是十六进制数,它的二进制表示为 00000111。<< 表示左移运算,将它左移 8 位,变成 0000011100000000。再进行按位取反运算,得到 1111100011111111。这个数的意义是在第8、9、10三个位上是0,其他位上是1。 那么, val &= ~(0x07<<8) 的意思就是将 val 与上述得到的 1111100011111111 进行按位与运算。按位与的规则是,只有两个数在相同位上都是1时,结果的对应位才是1,否则为0。因此,这个操作会将 val 中的第8、9、10三个位都变成0,其他位的值不变。
相关问题

//IO config val = readl(MEM_PE_CFG0); //CFG // printk(KERN_EMERG"MEM_PE_CFG0 = %x",val); val &= ~(0x07<<8); val |= 0x01<<8; writel(val,MEM_PE_CFG0);解释

这段代码是对一个寄存器进行读写操作,具体作用是设置寄存器的某些位的值。下面是详细解释: 1. 第一行代码 `val = readl(MEM_PE_CFG0)` 是对寄存器 `MEM_PE_CFG0` 进行读操作,并将读取到的值存储在变量 `val` 中。 2. 第二行代码 `val &= ~(0x07<<8)` 是对变量 `val` 进行位运算,将 `val` 中从第8位开始的 3 位设置为 0。这里使用了按位取反和按位与的操作,具体做法是先将 0x07 左移 8 位,得到掩码 `0x0007<<8 = 0x0700`,然后对其进行按位取反得到 `0xFFFFF8FF`,最后将 `val` 和该掩码进行按位与操作。 3. 第三行代码 `val |= 0x01<<8` 是对变量 `val` 进行位运算,将 `val` 中第 8 位设置为 1。这里使用了按位或的操作,具体做法是将 0x01 左移 8 位,得到值 `0x0100`,然后将 `val` 和该值进行按位或操作。 4. 最后一行代码 `writel(val, MEM_PE_CFG0)` 是对寄存器 `MEM_PE_CFG0` 进行写操作,将变量 `val` 的值写入该寄存器。 综上所述,这段代码的作用是将寄存器 `MEM_PE_CFG0` 的第 8 位设置为 1,同时将该寄存器的第 9、10、11 位设置为 0。

//IO config val = readl(MEM_PE_CFG0); //CFG // printk(KERN_EMERG"MEM_PE_CFG0 = %x",val); val &= ~(0x07<<8); val |= 0x01<<8; writel(val,MEM_PE_CFG0);用通俗的话解释

这段代码是对一个硬件设备的输入输出(IO)进行配置的操作。首先,它从一个叫做 MEM_PE_CFG0 的寄存器中读取一个值,并将其保存在变量 val 中。接着,它将这个值的第8、9、10三个位清零,再将第8位设置为1,最后将修改后的值写入 MEM_PE_CFG0 中。这样做的目的是对硬件设备的某些特性进行配置,以满足具体的需求。

相关推荐

解释这段代码#include "ioCC2530.h" #include <string.h> #define LED1 P1_0 #define uint16 unsigned short #define uint32 unsigned long #define uint unsigned int unsigned int flag,counter=0; unsigned char s[8]; void InitLED() { P1SEL &= ~0x01; P1DIR |= 0x01; LED1 = 0; } void adc_Init(void) { APCFG |= 1; P0SEL |= 0x01; P0DIR &= ~0x01; } uint16 get_adc(void) { uint32 value; ADCIF = 0; ADCCON3 = (0x80 | 0x10 |0x00); while(!ADCIF) { ; } value = ADCH; value = value<<8; value |=ADCL; value = (value * 330); value = value >> 15; return (uint16)value; } void initUART0(void) { PERCFG = 0x00; P0SEL = 0x3c; U0CSR |= 0x80; U0BAUD = 216; U0GCR = 10; U0UCR |=0x80; UTX0IF = 0; EA = 1; } void initTimer1() { CLKCONCMD &= 0x80; T1CTL = 0x0E; T1CCTL0 |= 0x04; T1CC0L = 50000 & 0xFF; T1CC0H = ((50000 & 0xFF00) >> 8); T1IF = 0; T1STAT &= ~0x01; TIMIF &= ~0x40; IEN1 |= 0x02; EA = 1; } void UART0SendByte(unsigned char c) { U0DBUF = c; while(!UTX0IF); UTX0IF = 0; } void UART0SendString(unsigned char *str) { while(*str != '\0') { UART0SendByte(*str++); } } void Get_val() { uint16 sensor_val; sensor_val = get_adc(); s[0] = sensor_val/100+'0'; s[1] = '.'; s[2] = sensor_val/10%10+'0'; s[3] = sensor_val%10+'0'; s[4] = 'V'; s[5] = '\n'; s[6] = '\0'; } #pragma vector = T1_VECTOR __interrupt void T1_ISR(void) { EA = 0; counter++; T1STAT &= ~0x01; EA = 1; } void main(void) { InitLED(); initTimer1(); initUART0(); adc_Init(); while(1) { if(counter>=15) { counter=0; LED1 = 1; Get_val(); UART0SendString("光照传感器电压值"); UART0SendString(s); LED1 = 0; } } }

最新推荐

recommend-type

NR网络拒绝码-cause_value = 17 (0x11) (Network failure).docx

NR网络拒绝码-cause_value = 17 (0x11) (Network failure).docx
recommend-type

NR5G网络拒绝码-5gmm_cause = 7 (0x7) (5GS Service not allowed)

NR5G网络拒绝码-5gmm_cause = 7 (0x7) (5GS Service not allowed)
recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这