逐次分半法求积分matlab的代码
时间: 2023-09-20 22:13:25 浏览: 123
下面是使用逐次分半法(二分法)求定积分的 MATLAB 代码:
```matlab
function [I,err] = bisection_integrate(f,a,b,tol)
% Bisection method for definite integration
% f: function handle of a scalar variable
% a, b: integration interval
% tol: tolerance for error
% I: approximation of the definite integral
% err: error estimate
if nargin < 4
tol = 1e-6; % default tolerance
end
fa = f(a);
fb = f(b);
I1 = (b-a)*(fa+fb)/2; % initial approximation
err = inf;
while err > tol
c = (a+b)/2;
fc = f(c);
I2 = (b-c)*(fb+fc)/2 + (c-a)*(fc+fa)/2; % approximation with two subintervals
err = abs(I2-I1)/3; % error estimate
I1 = I2;
if fc*fa >= 0
a = c;
fa = fc;
else
b = c;
fb = fc;
end
end
I = I2;
end
```
使用方法示例:
```matlab
f = @(x) exp(-x.^2); % function to integrate
a = 0; b = 1; % integration interval
[I,err] = bisection_integrate(f,a,b,1e-6);
fprintf('Integral value: %.8f\n', I);
fprintf('Error estimate: %.8f\n', err);
```
其中,`f` 是要求积分的函数句柄,`a` 和 `b` 分别是积分区间的下限和上限,`tol` 是误差容限,可以不指定,默认值为 `1e-6`。函数返回值 `I` 是积分的近似值,`err` 是误差估计。
阅读全文
相关推荐

















