lstm代码实现pytorch
时间: 2023-10-28 10:05:26 浏览: 56
可以参考以下代码实现LSTM模型:
```python
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# Initialize hidden state
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Initialize cell state
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0))
# Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out
```
其中,`input_size`为输入特征的维度,`hidden_size`为LSTM隐层特征的维度,`num_layers`为LSTM网络的层数,`output_size`为模型输出的维度。在`forward`函数中,我们先通过`zeros`函数初始化LSTM的隐藏状态和单元状态,然后将输入数据`x`传入LSTM网络,返回序列的输出和最后一个时间步的隐藏状态。最后,我们通过线性全连接层将隐藏状态映射到最终输出。
阅读全文