for j in range(args.batch_size): idx = i * args.batch_size + j if idx in idx_to_plot: pic = 'object_%d.png' % idx plot_single_pcd(result_dict['out2'][j].cpu().numpy(), os.path.join(save_completion_path, pic)) plot_single_pcd(gt_cpu[j], os.path.join(save_gt_path, pic)) plot_single_pcd(inputs_cpu[j].cpu().numpy(), os.path.join(save_partial_path, pic))
时间: 2024-02-14 21:30:17 浏览: 142
这段代码是一个循环,用于批量处理图像数据。根据给定的参数 `args.batch_size`,它会在每次迭代中处理 `args.batch_size` 张图像。在每次迭代中,它会计算出当前图像的索引 `idx`,然后检查该索引是否在 `idx_to_plot` 中。如果在其中,它会生成三张图像 `pic`,分别对应处理后的结果、真实标签和部分输入。然后,它会调用 `plot_single_pcd` 函数,将处理后的结果、真实标签和部分输入分别保存到指定的路径中。
相关问题
for batch_idx, (data, target) in enumerate(self.train_loader): data = data[..., :self.args.input_dim] label = target[..., :self.args.output_dim] # (..., 1) self.optimizer.zero_grad() #teacher_forcing for RNN encoder-decoder model #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps if self.args.teacher_forcing: global_step = (epoch - 1) * self.train_per_epoch + batch_idx teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps) else: teacher_forcing_ratio = 1. # data and target shape: B, T, N, F; output shape: B, T, N, F data, target维度均为64,12,307,1 output = self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio) if self.args.real_value: label = self.scaler.inverse_transform(label) loss = self.loss(output, label) loss.backward() # add max grad clipping if self.args.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) self.optimizer.step() total_loss += loss.item()
这段代码是一个训练循环的一部分,用于对批次数据进行训练。代码中使用`enumerate(self.train_loader)`来遍历训练数据集,并在每个批次中进行以下操作:
1. 首先,通过`data[..., :self.args.input_dim]`和`target[..., :self.args.output_dim]`对输入数据和标签进行切片,以获取指定维度的子集。这是为了确保输入和标签的维度匹配。
2. 然后,调用`self.optimizer.zero_grad()`来清零模型参数的梯度。
3. 接下来,根据`self.args.teacher_forcing`的值来确定是否使用"teacher forcing"的方法。如果`self.args.teacher_forcing`为真,则计算当前批次的全局步数,并使用`self._compute_sampling_threshold()`方法计算出"teacher forcing"的比例。否则,将"teacher forcing"比例设置为1.0,表示在解码器中的所有步骤都使用标签作为输入。
4. 调用`self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio)`来获取模型的输出。如果`self.args.real_value`为真,则通过`self.scaler.inverse_transform(label)`将标签逆转换为原始值。
5. 计算模型输出和标签之间的损失,并将损失值添加到总损失`total_loss`中。
6. 调用`loss.backward()`计算梯度,并使用`torch.nn.utils.clip_grad_norm_()`对梯度进行最大梯度裁剪。
7. 最后,调用`self.optimizer.step()`来更新模型参数。
这个循环会遍历整个训练数据集,并在每个批次中计算和更新模型的损失。
Runs MNIST training with differential privacy. """ Using matrix project to compress the gradient matrix """ def compress(grad, num_k, power_iter=1): return B, G_hat """ Complete the function of per-example clip """ def clip_column(tsr, clip_value=1.0): return def train(args, model, device, train_loader, optimizer, epoch, loss_func, clip_value): model.train() # criterion = nn.CrossEntropyLoss() losses = [] for _batch_idx, (data, target) in enumerate(tqdm(train_loader)): data, target = data.to(device), target.to(device) batch_grad_list = [] optimizer.zero_grad() output = model(data) loss = loss_func(output, target) if not args.disable_dp: with backpack(BatchGrad()): loss.backward() for p in model.parameters(): batch_grad_list.append(p.grad_batch.reshape(p.grad_batch.shape[0], -1)) #compose gradient into Matrix del p.grad_batch """ Using project method to compress the gradient """ if args.using_compress: #per-example clip else: """ Complete the code of DPSGD """ else: loss.backward() try: for p in model.parameters(): del p.grad_batch except: pass optimizer.step() losses.append(loss.item()) #get the num of the training dataset from train_loader if not args.disable_dp: epsilon = get_epsilon(epoch, delta=args.delta, sigma=args.sigma, sensitivity=clip_value, batch_size=args.batch_size, training_nums=len(train_loader)*args.batch_size) print( f"Train Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"(ε = {epsilon:.2f}, δ = {args.delta})" ) else: print(f"Train Epoch: {epoch} \t Loss: {np.mean(losses):.6f}")
这段代码是运行带有差分隐私的MNIST训练,其中使用矩阵项目压缩梯度矩阵。函数compress(grad, num_k, power_iter=1)用于压缩梯度矩阵,该函数返回B和G_hat。函数clip_column(tsr, clip_value=1.0)是用于每个样本的剪切函数,需要你完成代码。train函数是训练函数,其中loss_func是损失函数,clip_value是剪切值,如果不禁用差分隐私,则会计算epsilon值并打印。
阅读全文