def random_subsample(pcd, n_points=2048): """ Args: pcd: (B, N, 3) returns: new_pcd: (B, n_points, 3) """ b, n, _ = pcd.shape device = pcd.device batch_idx = torch.arange(b, dtype=torch.long, device=device).reshape((-1, 1)).repeat(1, n_points) idx = torch.cat([torch.randperm(n, dtype=torch.long, device=device)[:n_points].reshape((1, -1)) for i in range(b)], 0) return pcd[batch_idx, idx, :]请说一下这段代码进行采样的采样规则是什么?
时间: 2024-04-17 21:23:54 浏览: 150
拼接tif影像matlab代码-Stitch_and_subsample:针和子样本
这段代码是使用随机采样的方式对输入的点云进行采样,采样的规则如下:
1. 首先,确定输入点云的形状和大小,其中`pcd`是一个形状为 `(B, N, 3)` 的张量,表示 B 组点云数据,每组包含 N 个点,每个点由三个坐标值组成。
2. 然后,确定要采样的点的数量 `n_points`,默认值为 2048。
3. 接下来,根据每组点云的数量 N,生成一个形状为 `(B, n_points)` 的张量 `batch_idx`,其中每个元素的值都是对应组别的索引值。
4. 为了进行随机采样,对于每组点云,使用 `torch.randperm` 函数生成一个随机排列的索引张量 `idx`,其中值的范围为 0 到 N-1,并且生成的索引数量为 `n_points`。
5. 最后,使用 `batch_idx` 和 `idx` 对输入点云张量 `pcd` 进行索引,提取出对应位置的采样点。返回的张量 `new_pcd` 的形状为 `(B, n_points, 3)`,表示采样后的点云数据。
综上所述,这段代码通过在每组点云中随机选择指定数量的点来进行采样,并返回采样后的点云数据。采样的结果是随机的,每次运行代码都可能得到不同的采样结果。
阅读全文