cv2.threshold(gray_img, 120, 255, cv2.THRESH_BINARY_INV)

时间: 2024-05-20 19:03:58 浏览: 19
这行代码使用了OpenCV库中的threshold函数,对灰度图像gray_img进行二值化处理,将灰度值大于等于120的像素点设为255(白色),灰度值小于120的像素点设为0(黑色),并使用cv2.THRESH_BINARY_INV选项将结果进行反转,即黑白颜色反转。该函数的返回值为二值化后的图像。
相关问题

讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img

这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释: 1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。 2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。 3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。 4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。 5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。 6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。 7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。 8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。 9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。 10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。 11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。 这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。

import cv2 import numpy as np #Load two images img1 = cv2.imread('sources/1.jpg') img2 = cv2.imread('sources/3.jpg') #I want to put logo on top-left corner, So I create a ROI rows, cols, channels = img2.shape roi = img1[0:rows, 0:cols] #Now create a mask of logo and create its inverse mask img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) # add a threshold ret,mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV) mask_inv = cv2.bitwise_not(mask) # Now black-out the area of logo in ROI img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv) # Take only region of logo from logo image. img2_fg = cv2.bitwise_and(img2, img2, mask=mask) dst = cv2.add(img1_bg,img2_fg) img1[0:rows, 0:cols] = dst cv2.imshow('res',img1) cv2.waitKey(0) cv2.destroyAllWindows()

这段代码是一个图像融合的示例,将一个图像(img2)上的一部分区域(logo)融合到另一个图像(img1)上。代码的具体步骤如下: 1. 通过cv2.imread函数加载两个图像,分别为img1和img2。 2. 创建一个感兴趣区域(ROI),即img1中要融合logo的位置。 3. 将img2转换为灰度图像,使用cv2.cvtColor函数将其从BGR格式转换为灰度格式,保存在img2gray中。 4. 对img2gray进行阈值处理,通过cv2.threshold函数将灰度图像二值化为掩膜mask。阈值设定为220,即灰度值大于220的像素设为255(白色),小于等于220的像素设为0(黑色)。通过cv2.THRESH_BINARY_INV参数进行反转,使得logo部分为黑色,背景为白色。 5. 对mask进行按位取反操作,得到mask_inv,即将logo部分设为白色,背景部分设为黑色。 6. 对ROI中的图像img1_bg进行按位与操作,使用cv2.bitwise_and函数将ROI与mask_inv进行按位与运算,得到img1_bg,即将ROI中的logo部分变为黑色。 7. 对img2中的图像进行按位与操作,使用cv2.bitwise_and函数将img2与mask进行按位与运算,得到img2_fg,即将img2中的非logo部分变为黑色。 8. 将img1_bg和img2_fg进行图像相加,使用cv2.add函数将两个图像进行相加,得到dst,即融合后的图像。 9. 将dst复制到img1的ROI区域,即将融合后的图像放回原图。 10. 使用cv2.imshow显示结果图像,cv2.waitKey等待按键,cv2.destroyAllWindows关闭窗口。 这段代码实现了将img2中的logo部分融合到img1中的指定位置,最终展示了融合后的结果图像。

相关推荐

import cv2 import numpy as np import tensorflow as tf # 加载之前训练好的模型 model = tf.keras.models.load_model('mnist_cnn_model') for img in images_data: # 将RGB格式转换为BGR格式 img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # 转换为灰度图像 gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY) # 二值化处理 _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # 找到轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 初始化计数器 count = 0 # 遍历所有轮廓 for contour in contours: # 计算轮廓面积 area = cv2.contourArea(contour) if area < 200 or area > 2000: # 如果轮廓面积小于10个像素,则忽略该轮廓 continue # 获取轮廓的外接矩形 x, y, w, h = cv2.boundingRect(contour) # 在原始图像上标记出抠出来的数字部分,并将BGR格式转换为RGB格式 cv2.rectangle(img_bgr, (x, y), (x+w, y+h), (0, 255, 0), 2) digit = cv2.cvtColor(img_bgr[y:y+h, x:x+w], cv2.COLOR_BGR2RGB) # 对数字图像进行预处理,使其与训练数据具有相同的格式 digit_resized = cv2.resize(digit, (28, 28)) digit_gray = cv2.cvtColor(digit_resized, cv2.COLOR_RGB2GRAY) digit_normalized = digit_gray / 255.0 digit_reshaped = np.reshape(digit_normalized, (1, 28, 28)) # 进行预测并输出最大概率对应的数字 prediction = model.predict(digit_reshaped) digit_class = np.argmax(prediction) print("抠出来的数字是:", digit_class) # 增加计数器 count += 1 # 在原始图像上显示标记过的抠出来的数字部分 #plt.figure(figsize=(20, 20)) #plt.imshow(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)) #plt.show() # 显示抠出来的数字个数 print("抠出来了{}个数字".format(count)) 如何解决error Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_12928/408549256.py in <module> 8 for img in images_data: 9 # 将RGB格式转换为BGR格式 ---> 10 img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) 11 12 # 转换为灰度图像 error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'cvtColor' > Overload resolution failed: > - src is not a numpy array, neither a scalar > - Expected Ptrcv::UMat for argument 'src'这个错误

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

二项分布:离散分布中的关键案例,理解二项分布的应用

![二项分布:离散分布中的关键案例,理解二项分布的应用](https://img-blog.csdnimg.cn/20201206104644803.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDQ0MTEzMQ==,size_16,color_FFFFFF,t_70) # 1. 二项分布的基本概念 二项分布是一种离散概率分布,用于描述在固定次数的独立试验中成功事件发生的次数。它广泛应用于各种领域,包括质量控
recommend-type

程序哪里有错误 fun(int *p1,int *p2) { int *p; *p = *p1; *p1 = *p2; *p2 = *p; }

这个函数`fun(int *p1, int *p2)`存在几个错误和潜在问题: 1. 变量声明与赋值:你试图通过`*p = *p1`来分配指针`p`的值,但实际上`p`是一个未初始化的指针,直接赋值可能会导致不确定的行为。正确的做法是先为`p`指向一个内存位置。 2. 临时变量:你的代码没有明确使用`p`这个临时变量。如果你想交换`p1`和`p2`所指向的值,应该使用指针的解引用操作,而不是将`*p`赋值给它们。 3. 指向不确定的数据:由于`p`没有被初始化,如果它指向的是栈上的临时空间,当函数结束时这些值可能会丢失,除非特别指定它指向堆中的数据。 修复后的代码可能如下所示: ```