采用邻接表创建无向图g ,依次输出各顶点的度。

时间: 2023-05-31 20:20:36 浏览: 197
### 回答1: 首先,邻接表是一种表示图的数据结构,它由一个数组和若干个链表组成。数组中的每个元素表示一个顶点,链表中存储该顶点所连接的其他顶点。 创建无向图g的邻接表可以按照以下步骤进行: 1. 定义一个包含n个链表的数组,其中n为图中顶点的个数。 2. 对于每个顶点,创建一个链表,用于存储与该顶点相邻的其他顶点。 3. 遍历图中的每条边,将每个顶点所连接的其他顶点添加到对应的链表中。 4. 输出各顶点的度,即为该顶点所连接的其他顶点的个数。 具体实现可以参考以下代码: ``` #include <iostream> #include <vector> using namespace std; // 定义邻接表节点 struct Node { int val; Node* next; Node(int v) : val(v), next(nullptr) {} }; // 定义邻接表 class Graph { public: Graph(int n) : nodes(n), edges() { for (int i = ; i < n; i++) { nodes[i] = new Node(i); } } // 添加边 void addEdge(int u, int v) { Node* node1 = new Node(v); node1->next = nodes[u]->next; nodes[u]->next = node1; Node* node2 = new Node(u); node2->next = nodes[v]->next; nodes[v]->next = node2; edges++; } // 输出各顶点的度 void printDegrees() { for (int i = ; i < nodes.size(); i++) { int degree = ; Node* cur = nodes[i]->next; while (cur) { degree++; cur = cur->next; } cout << "顶点" << i << "的度为:" << degree << endl; } } private: vector<Node*> nodes; // 邻接表数组 int edges; // 边数 }; int main() { int n = 5; // 顶点个数 Graph g(n); // 添加边 g.addEdge(, 1); g.addEdge(, 2); g.addEdge(1, 2); g.addEdge(1, 3); g.addEdge(2, 3); g.addEdge(3, 4); // 输出各顶点的度 g.printDegrees(); return ; } ``` 输出结果为: ``` 顶点的度为:2 顶点1的度为:3 顶点2的度为:3 顶点3的度为:3 顶点4的度为:1 ``` ### 回答2: 无向图是一种不具有方向性的图形,其由若干个顶点和若干条无序的边构成。在无向图中,每个顶点有若干个相邻的顶点,而每一条边连接的两个顶点的度数均为1。因此,我们可以采用邻接表的方式来创建无向图g,依次输出各顶点的度数。 首先,我们需要了解邻接表的定义和构成。邻接表是一种用于表示图的数据结构,它由一个顶点数组和一个边链表组成。其中,顶点数组记录了所有图的顶点信息,而边链表则记录了每个顶点所相邻的所有顶点。 在将无向图g转化为邻接表表示时,我们需要对每个顶点建立一个链表,链表中列出该顶点所相邻的所有顶点。具体的实现过程如下: 1. 创建一个顶点数组,数组的大小为无向图g的顶点数。每个数组元素都包括两个字段:一个是顶点编号,另一个是该顶点所相邻的顶点链表的头结点。 2. 对于每条在g中的边(u,v),将v加入u的相邻链表中,同时将u加入v的相邻链表中。 3. 遍历顶点数组,计算每个顶点的度数。由于g为无向图,因此每个顶点的度数等于其相邻链表中元素的个数。 以一个简单的5个顶点的无向图为例,其邻接表创建过程如下: ```python class Graph: def __init__(self, n): self.nodes = [] self.n = n for i in range(n): self.nodes.append(Node(i, None)) def add_edge(self, u, v): node_u = self.nodes[u] node_v = self.nodes[v] while node_u.next: node_u = node_u.next while node_v.next: node_v = node_v.next node_u.next = Node(v, None) node_v.next = Node(u, None) def print_degree(self): for node in self.nodes: degree = 0 cur = node.next while cur: degree += 1 cur = cur.next print(node.val, degree) class Node: def __init__(self, val, next): self.val = val self.next = next # 测试代码 g = Graph(5) g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(0, 4) g.add_edge(1, 3) g.add_edge(1, 4) g.print_degree() # 输出每个顶点的度 ``` 在上述代码中,我们首先创建了一个大小为5的顶点数组,并通过`add_edge`方法将边(u,v)加入顶点u和v的相邻链表中。最后,我们遍历整个顶点数组,计算每个顶点的度数,并将其输出。 以上就是利用邻接表来创建无向图g,并输出各顶点的度的过程,该方法具有时间复杂度O(m+n),其中m为边数,n为顶点数。 ### 回答3: 邻接表是用来存储图的一种数据结构,它由一个一维数组和多个链表组成,每个数组元素对应一个顶点,数组中存储的值是与该顶点相邻的顶点的链表头指针。邻接表适合用于表示稀疏图。 对于无向图g,我们可以采用邻接表来表示。首先,我们需要定义一个链表的结构体,包含两个成员:一个是顶点下标,另一个是指向下一个相邻顶点的指针。 ``` struct node { int index; // 顶点下标 struct node* next; // 指向下一个相邻顶点的指针 }; ``` 然后,我们定义一个数组adjList,大小为顶点数,数组中的每个元素都是一个指向链表头的指针。表示与该顶点相邻的所有顶点。 ``` struct node *adjList[MAX_VERTEX_NUM]; // 邻接表数组,大小为顶点数 ``` 接下来,通过读入每条边信息,我们可以更新邻接表的数据。具体来说,我们对于每条边(u, v),都将v添加到u的链表中,将u添加到v的链表中。这里有一个需要注意的点:由于是无向图,我们需要在更新u的链表时,同时更新v的链表。因此,我们需要将v添加到u的链表中,同时将u添加到v的链表中。 ``` struct node *p, *q; p = (struct node *) malloc(sizeof(struct node)); p->index = v; // 邻接点下标为v p->next = adjList[u]; // 将p插入到u的链表头 adjList[u] = p; q = (struct node *) malloc(sizeof(struct node)); q->index = u; // 邻接点下标为u q->next = adjList[v]; // 将q插入到v的链表头 adjList[v] = q; ``` 有了邻接表,我们就可以方便地求出每个顶点的度了。对于顶点i的度,只需要计算其邻接表中链表的长度即可。 ``` int degree[MAX_VERTEX_NUM]; // 存储各顶点的度 for (int i = 0; i < n; i++) { int cnt = 0; p = adjList[i]; while (p != NULL) { cnt++; p = p->next; } degree[i] = cnt; } ``` 最终,我们可以依次输出各顶点的度。 ``` for (int i = 0; i < n; i++) printf("顶点%d的度为%d\n", i, degree[i]); ```

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩