实验7-2-5 判断上三角矩阵 题目描述 上三角矩阵指主对角线以下的元素都为0的矩阵;主对角线为从矩阵的左上角至右下角的连线。 本题要求编写程序,判断一个给定的方阵是否上三角矩阵。 输入 输入第一行给出一个正整数T,为待测矩阵的个数。接下来给出T个矩阵的信息:每个矩阵信息的第一行给出一个不超过10的正整数n。随后n行,每行给出n个整数,其间以空格分隔。 输出 每个矩阵的判断结果占一行。如果输入的矩阵是上三角矩阵,输出“YES”,否则输出“NO”。

时间: 2024-02-05 08:10:59 浏览: 81
```python T = int(input()) for i in range(T): n = int(input()) matrix = [] for j in range(n): row = list(map(int, input().split())) matrix.append(row) flag = True for j in range(n): for k in range(j + 1, n): if matrix[j][k] != 0: flag = False break if not flag: break if flag: print("YES") else: print("NO") ``` 代码思路: 1. 输入测试数据的个数T。 2. 对于每个测试数据: 1. 读入矩阵的大小n。 2. 读入矩阵的所有元素,存入matrix中。 3. 遍历矩阵,检查主对角线以下的元素是否都是0,如果发现非零元素,则将flag标记为False,同时跳出循环。 4. 根据flag的值输出结果。
相关问题

题目描述 上三角矩阵指主对角线以下的元素都为0的矩阵;主对角线为从矩阵的左上角至右下角的连线。 本题要求编写程序,判断一个给定的方阵是否上三角矩阵

好的,关于你的问题,我很乐意为你解答。对于判断一个方阵是否为上三角矩阵,我们可以遍历其主对角线以下的元素,只要发现其中有非零元素,就可以判定该矩阵不是上三角矩阵。以下是一个Python实现的示例代码: ```python def is_upper_triangle_matrix(matrix): n = len(matrix) for i in range(n): for j in range(i): if matrix[i][j] != 0: return False return True ``` 其中,`matrix`是一个二维矩阵,函数返回一个布尔值,表示该矩阵是否为上三角矩阵。你可以将该函数嵌入到你的程序中,用于判断给定的方阵是否为上三角矩阵。

本题要求编写程序,判断一个给定的方阵是否是三角矩阵。三角矩阵包含上三角矩阵和下三角矩阵两种。\n\n上三角矩阵指主对角线以下的元素都为0的矩阵;下三角矩阵指主对角线以上的元素都为0的矩阵;主对角线为从矩阵

### 回答1: 本题要求编写程序,判断一个给定的方阵是否是三角矩阵。三角矩阵包含上三角矩阵和下三角矩阵两种。 上三角矩阵指主对角线以下的元素都为0的矩阵;下三角矩阵指主对角线以上的元素都为0的矩阵。主对角线指从矩阵左上角到右下角的一个对角线。 上三角矩阵包含上三角矩阵和下三角矩阵两种。 上三角矩阵指主对角线以下的元素都为0的矩阵;下三角矩阵指主对角线以上的元素都为0的矩阵。主对角线指从矩阵左上角到右下角的一个对角线。 其中,上三角矩阵指主对角线以下的元素都为0的矩阵;下三角矩阵指主对角线以上的元素都为0的矩阵。主对角线指从矩阵左上角到右下角的一个对角线。 ### 回答2: 要判断一个方阵是否为三角矩阵,可以利用程序遍历矩阵中的每一个元素,并判断其所在的位置,即行号和列号的大小关系。若一个方阵是上三角矩阵,则其行号大于等于列号的元素均为0;若一个方阵是下三角矩阵,则其行号小于等于列号的元素均为0。 下面是一份示例代码实现: ``` #include <stdio.h> #define N 5 // 方阵大小 int main() { int matrix[N][N] = { {1, 2, 3, 4, 5}, {0, 6, 7, 8, 9}, {0, 0, 10, 11, 12}, {0, 0, 0, 13, 14}, {0, 0, 0, 0, 15} }; // 示例方阵 int i, j; int upper_tri_flag = 1; // 判断是否为上三角矩阵的标志 int lower_tri_flag = 1; // 判断是否为下三角矩阵的标志 // 判断是否为上三角矩阵 for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { if (matrix[i][j] != 0) { upper_tri_flag = 0; break; } } if (!upper_tri_flag) { break; } } // 判断是否为下三角矩阵 for (i = 0; i < N; i++) { for (j = i + 1; j < N; j++) { if (matrix[i][j] != 0) { lower_tri_flag = 0; break; } } if (!lower_tri_flag) { break; } } if (upper_tri_flag) { printf("该方阵为上三角矩阵\n"); } else if (lower_tri_flag) { printf("该方阵为下三角矩阵\n"); } else { printf("该方阵不为三角矩阵\n"); } return 0; } ``` 上面的代码中,首先定义了一个示例方阵,然后利用两个标志变量 `upper_tri_flag` 和 `lower_tri_flag` 分别判断其是否为上三角矩阵和下三角矩阵。使用两层循环遍历矩阵的每一个元素,在对应的位置上判断其是否为零,若不为零则将标志变量设为0,并跳出循环。最后根据 `upper_tri_flag` 和 `lower_tri_flag` 的值输出对应的判断结果。 ### 回答3: 要判断一个给定的方阵是否为三角矩阵,需要编写一个简单的程序。首先,需要明确一个方阵是由一个二维数组表示的,可以用一个嵌套的 for 循环遍历方阵的每一个元素。 对于判断上三角矩阵,可以根据定义,将主对角线以下的元素遍历一遍,判断是否都为0。可以使用两个嵌套的 for 循环,外层遍历行,内层遍历行中当前元素及其下面的所有元素。如果发现任意一个元素不为0,则可以认为该方阵不是上三角矩阵。如果所有元素都为0,则可以认为该方阵是上三角矩阵。 下三角矩阵的判断原理类似。也是根据定义,将主对角线以上的元素遍历一遍,判断是否都为0。不同之处在于,内层循环需要遍历行中当前元素及其上面的所有元素。如果发现任意一个元素不为0,则可以认为该方阵不是下三角矩阵。如果所有元素都为0,则可以认为该方阵是下三角矩阵。 以下为示例代码: // 判断是否为上三角矩阵 bool isUpperTriangularMatrix(int arr[][MAXN], int n) { for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (arr[i][j] != 0) { return false; } } } return true; } // 判断是否为下三角矩阵 bool isLowerTriangularMatrix(int arr[][MAXN], int n) { for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (arr[i][j] != 0) { return false; } } } return true; } 在代码中,n 表示方阵的大小。两个函数都返回一个布尔值,表明给定方阵是否为对应的三角矩阵。可以将这两个函数放在同一个文件中,同时测试它们的正确性。
阅读全文

相关推荐

最新推荐

recommend-type

医疗影像革命-YOLOv11实现病灶实时定位与三维重建技术解析.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

智慧物流实战-YOLOv11货架商品识别与库存自动化盘点技术.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

自动驾驶核心-YOLOv11多传感器融合障碍物检测模型架构揭秘.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

基于多松弛(MRT)模型的格子玻尔兹曼方法(LBM)Matlab代码实现:模拟压力驱动流场与优化算法研究,使用多松弛(MRT)模型与格子玻尔兹曼方法(LBM)模拟压力驱动流的Matlab代码实现,使用

基于多松弛(MRT)模型的格子玻尔兹曼方法(LBM)Matlab代码实现:模拟压力驱动流场与优化算法研究,使用多松弛(MRT)模型与格子玻尔兹曼方法(LBM)模拟压力驱动流的Matlab代码实现,使用格子玻尔兹曼方法(LBM)模拟压力驱动流,多松弛(MRT)模型,Matlab代码 ,LBM; 驱动流; MRT模型; Matlab代码,LBM-MRT模型在Matlab中模拟压力驱动流
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round