h:inputHidden
时间: 2023-07-19 16:39:00 浏览: 111
h:inputHidden是JSF核心标签库中的一个标签,用于定义一个隐藏的表单输入域。与普通的表单输入域不同,h:inputHidden不会在页面上显示,但它的值会被提交到服务器。
h:inputHidden标签可以有以下属性:
- id:标签的唯一标识符
- value:输入域的初始值,可以是一个表达式
- converter:定义数据类型转换器
- binding:将组件绑定到后台bean的属性或方法
- rendered:控制组件是否呈现,可以是一个表达式
- required:指定输入域是否必需
- validator:定义验证器
- immediate:指定是否立即执行验证器和转换器
以下是一个h:inputHidden标签的示例:
```
<h:form>
<h:inputHidden id="hiddenField" value="#{bean.hiddenFieldValue}" />
<h:commandButton value="Submit" action="#{bean.submit}" />
</h:form>
```
在上面的示例中,hiddenField是一个隐藏的输入域,它的值会被提交到服务器,而用户无法看到它。hiddenFieldValue是后台bean中的一个属性,用于存储输入域的值。当用户点击Submit按钮时,会触发submit方法,服务器将获取hiddenFieldValue的值并进行处理。
相关问题
Forward pass Bottleneck LSTM layer If stateful LSTM h and c must be None. Else they must be Tensor. @param inputs: input tensor @param h: hidden states (if None, they are automatically initialised) @param c: cell states (if None, they are automatically initialised) @return: new hidden and cell states
这个错误通常是因为你在使用 LSTM 层进行前向传递时,参数 `h` 或 `c` 的类型不正确。根据这个错误信息,你传递给 LSTM 层的参数类型应该是 `None` 或 `Tensor`。
如果你使用的是带有状态的 LSTM 层(即 `stateful=True`),则在前向传递时,应该将参数 `h` 和 `c` 都设置为 `None`。这是因为 LSTM 层会记住之前的状态,并在下一次前向传递时使用它们作为输入。如果你不需要记忆之前的状态,则可以将 `stateful` 设置为 `False`。
如果你使用的是不带状态的 LSTM 层(即 `stateful=False`),则应该将参数 `h` 和 `c` 设置为张量(`Tensor`)类型,以初始化 LSTM 层的隐藏状态和细胞状态。你可以使用 `torch.zeros()` 或 `torch.randn()` 等函数来创建张量。
下面是一个示例,演示如何在 PyTorch 中使用 LSTM 层进行前向传递:
```python
import torch
import torch.nn as nn
# 创建一个带有 2 个 LSTM 层的模型
model = nn.LSTM(input_size=10, hidden_size=20, num_layers=2)
# 创建输入张量
inputs = torch.randn(5, 3, 10)
# 初始化隐藏状态和细胞状态
h0 = torch.zeros(2, 3, 20)
c0 = torch.zeros(2, 3, 20)
# 前向传递
outputs, (hn, cn) = model(inputs, (h0, c0))
# 打印输出张量的形状
print(outputs.shape)
```
在这个例子中,我们创建了一个带有 2 层 LSTM 的模型,并使用大小为 [5, 3, 10] 的随机张量作为输入。我们还使用 `torch.zeros()` 函数创建了大小为 [2, 3, 20] 的张量来初始化 LSTM 的隐藏状态和细胞状态。最后,我们对输入进行前向传递,并打印输出张量的形状。
A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤
首先,我们需要定义一个EncoderNetwork类,它应该包含三个部分:RNN模型、全连接层和卷积层。以下是一个简单的实现:
```
import torch
import torch.nn as nn
class EncoderNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(EncoderNetwork, self).__init__()
# RNN Model
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
# Fully Connected Layer
self.fc = nn.Linear(hidden_size + 1, output_size)
# Convolutional Layer
self.conv1d = nn.Conv1d(output_size, output_size, kernel_size=1)
# ReLU activation function
self.relu = nn.ReLU()
def forward(self, x, m):
# Part I: RNN Model
y = x.view(x.size(0), -1)
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
out, _ = self.rnn(y, h0)
p = out[:, -1, :]
# Part II: Fully Connected Layer
m = m.view(-1, 1)
h = self.fc(torch.cat((p, m), dim=1))
p_ = self.relu(h)
# Part III: Convolutional Layer
p_ = p_.permute(0, 2, 1)
p_ = self.conv1d(p_)
p_ = self.relu(p_)
p_ = p_.permute(0, 2, 1)
return p_
```
在上面的代码中,我们定义了一个EncoderNetwork类,它有三个部分:RNN模型、全连接层和卷积层。在forward函数中,我们首先输入pij的张量x和机器数量m,然后按照Part I、Part II和Part III的顺序进行处理。最后,我们返回最终的输出张量。
在这个类的构造函数中,我们定义了RNN模型、全连接层、卷积层和ReLU激活函数。在forward函数中,我们首先将输入x转换为一个2D张量,并将h0初始化为全零张量。然后我们使用RNN模型处理x,得到输出out。在这个过程中,我们只需要使用out的最后一个时间步,即out[:,-1,:],作为RNN模型的输出p。接下来,我们将机器数量m与p连接起来,然后将它们输入到全连接层中。最后,我们将全连接层的输出张量输入到卷积层中,并经过ReLU激活函数处理。
在使用这个类时,我们需要传入三个参数:输入大小input_size、隐藏层大小hidden_size和输出大小output_size。然后,我们可以使用encoder = EncoderNetwork(input_size, hidden_size, output_size)来创建一个EncoderNetwork对象。最后,我们可以使用encoder.forward(x, m)来计算x和m的输出张量。
阅读全文