relief算法c语言
时间: 2024-02-04 11:02:22 浏览: 107
RELIEF算法是一种经典的特征选择算法,其主要思想是基于样本之间的距离来评估特征的重要性,具体步骤如下:
1. 初始化特征权重为0。
2. 随机选择一个样本。
3. 计算该样本与其他样本之间的距离,并记录最近邻和最远邻样本。
4. 对于每个特征,计算其在最近邻和最远邻样本中的差异,并将其差异值乘以一个权重系数,加到特征的权重上。
5. 重复2-4步骤,直到所有样本都被遍历过。
6. 根据特征的权重排序,选择排名前n的特征作为最终的特征集。
以下是一个简单的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N_FEATURES 10 // 特征数
#define N_SAMPLES 100 // 样本数
#define K_NEIGHBORS 5 // 最近邻样本数
double data[N_SAMPLES][N_FEATURES]; // 样本数据
int labels[N_SAMPLES]; // 样本标签
double weights[N_FEATURES]; // 特征权重
// 计算两个样本之间的欧几里得距离
double distance(int i, int j) {
double d = 0.0;
for (int k = 0; k < N_FEATURES; k++) {
double diff = data[i][k] - data[j][k];
d += diff * diff;
}
return sqrt(d);
}
// 查找最近邻和最远邻样本
void find_neighbors(int i, int *nn, int *dn) {
double min_dist = INFINITY, max_dist = -INFINITY;
for (int j = 0; j < N_SAMPLES; j++) {
if (i != j) {
double dist = distance(i, j);
if (dist < min_dist) {
min_dist = dist;
nn[0] = j;
}
if (dist > max_dist) {
max_dist = dist;
dn[0] = j;
}
}
}
for (int k = 1; k < K_NEIGHBORS; k++) {
nn[k] = dn[k] = -1;
}
for (int j = 0; j < N_SAMPLES; j++) {
if (i != j) {
double dist = distance(i, j);
if (dist <= min_dist) {
for (int k = 0; k < K_NEIGHBORS; k++) {
if (nn[k] == -1 || dist < distance(i, nn[k])) {
for (int l = K_NEIGHBORS-1; l > k; l--) {
nn[l] = nn[l-1];
}
nn[k] = j;
break;
}
}
}
if (dist >= max_dist) {
for (int k = 0; k < K_NEIGHBORS; k++) {
if (dn[k] == -1 || dist > distance(i, dn[k])) {
for (int l = K_NEIGHBORS-1; l > k; l--) {
dn[l] = dn[l-1];
}
dn[k] = j;
break;
}
}
}
}
}
}
int main() {
// 读入数据和标签
for (int i = 0; i < N_SAMPLES; i++) {
for (int j = 0; j < N_FEATURES; j++) {
scanf("%lf", &data[i][j]);
}
scanf("%d", &labels[i]);
}
// 计算特征权重
for (int i = 0; i < N_SAMPLES; i++) {
int nn[K_NEIGHBORS], dn[K_NEIGHBORS];
find_neighbors(i, nn, dn);
for (int j = 0; j < N_FEATURES; j++) {
double diff_nn = 0.0, diff_dn = 0.0;
for (int k = 0; k < K_NEIGHBORS; k++) {
diff_nn += data[nn[k]][j];
diff_dn += data[dn[k]][j];
}
diff_nn /= K_NEIGHBORS;
diff_dn /= K_NEIGHBORS;
weights[j] += fabs(diff_nn - diff_dn);
}
}
// 输出特征权重
for (int j = 0; j < N_FEATURES; j++) {
printf("Feature %d: %.3lf\n", j+1, weights[j]);
}
return 0;
}
```
注意:此代码仅供参考,实际使用时需要根据具体情况进行修改。
阅读全文