求和s=1-1/2+1/3-1/4…一直到1/N结束。如输入3表示表示求1-1/2+1/3的值,请思考加减项关系

时间: 2023-08-26 10:05:22 浏览: 226
这道题可以使用加减项交替的方法,将正负号与分母分别作为一个项。首先,我们将第一项设为正数1,第二项为负数1/2,第三项为正数1/3,第四项为负数1/4,以此类推。那么,我们可以发现每两项之和都可以化简为一个分数形式,如: 1 - 1/2 = 1/2 1/3 - 1/4 = 1/12 1/5 - 1/6 = 1/30 ... 因此,我们可以将所有的加减项分别求和,然后相加即可得到最终的结果。具体实现可以使用一个循环来逐项计算,代码如下: ```python n = int(input("请输入一个整数:")) s = 0 sign = 1 # 初始符号为正 for i in range(1, n+1): s += sign * 1/i sign = -sign # 符号取反 print("结果为:", s) ``` 例如,当输入3时,程序将输出结果为0.8333333333333334。
相关问题

设多项式s=x-1/3 x³+1/5x⁵-…+(-1)N次方/2n+1*x(2n+1)次方 用结构化流程图和NS流程图描述当输入x值后计算并输出该多项式值的流程,直到最后一项的绝对值小于10的-6次方为止

要使用结构化流程图和N-S(Nested-Sequential,嵌套顺序)流程图来描述计算多项式值的过程,首先我们需要定义几个关键步骤: 1. 输入x的值。 2. 初始化多项式的各项系数,从1开始,奇数项为负。 3. 计算每一项的值 (x^n / (2n+1)),直到达到给定精度(绝对值小于10^(-6))。 4. 如果当前项的绝对值小于精度限制,停止计算。 5. 将所有项相加得到多项式的总和。 6. 输出结果。 以下是对这两种图形表示的简要描述: **结构化流程图:** ``` 开始 | V 输入 x | V 初始化多项式系数 | V 循环 (直到满足精度条件) | V 计算当前项 | V 判断是否达到精度 | V (如果满足) 结束循环 | V 求和所有项 | V 输出多项式值 结束 ``` **N-S流程图(Nested Sequential):** ``` 开始 | V [ 输入 x ] | V [ 初始化多项式 ] | V [ 循环 ] | V [ 计算当前项 ] | V [ 判断精度 ] | V [ 如果满足精度 ] [ 结束循环 ] | V [ 求和 ] | V [ 输出 ] 结束 ``` 在这个过程中,你需要根据具体的编程语言设计代码实现细节,例如定义一个数据结构(如数组或结构体)来存储多项式的系数,以及编写循环来迭代计算每一项直到满足精度要求。在实际编程时,还需要考虑可能的错误处理和边界条件。

S=1+1/1+2+1/1+2+3+…+1/1+…+n

以下是使用for循环实现计算S=1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+……+n)的Python代码: ```python n = int(input("请输入n的值:")) sum = 0 for i in range(1, n+1): s = 0 for j in range(1, i+1): s += j sum += 1/s print("S的值为:", sum) ``` 其中,外层循环控制求和的次数,内层循环用于计算分母。在每次内层循环结束后,将分数加到总和中。最后输出总和即可。
阅读全文

相关推荐

#include <stdio.h> #include <conio.h> #include <windows.h> // 求素数 int* get_prime() { static int primes[30]; int prime[101]; for (int i = 0; i <= 100; i++) { prime[i] = 1; } prime[0] = prime[1] = 0; for (int i = 2; i < 10; i++) { if (prime[i]) { for (int j = i * i; j <= 100; j += i) { prime[j] = 0; } } } int count = 0; for (int i = 2; i <= 100; i++) { if (prime[i]) { primes[count++] = i; } } primes[count] = -1; // 用-1表示素数数组的结尾 return primes; } // 输出素数 void print_primes(int* primes) { system("cls"); // 清空屏幕 int count = 0; for (int i = 0; primes[i] != -1; i++) { count++; printf("%d ", primes[i]); if (count % 10 == 0) { printf("\n"); } Sleep(1000); // 停顿一秒 system("cls"); // 清空屏幕 } } // 统计素数个数和求和 void count_sum(int* primes, int* count, int* s) { *count = 0; *s = 0; for (int i = 0; primes[i] != -1; i++) { *count += 1; *s += primes[i]; } } // 让素数之和闪烁三次 void blink_sum(int s) { printf("\n素数之和为:%d", s); for (int i = 0; i < 3; i++) { Sleep(500); system("cls"); Sleep(500); printf("\n素数之和为:%d", s); } } // 主程序 int main() { printf("100以内求素数\n"); printf("请按任意键开始"); getch(); int* primes = get_prime(); printf("\n100以内的素数为:\n"); print_primes(primes); int count, s; count_sum(primes, &count, &s); printf("\n100以内的素数个数为:%d", count); blink_sum(s); printf("\n程序结束"); return 0; }从类型和结构分析这段程序的详细设计及编码

#include<iostream> #include<vector> #include<algorithm> #include<string> using namespace std; struct Node { Node(double d, Node* l = NULL, Node* r = NULL, Node* f = NULL) :data(d), left(l), right(r), father(f) {} double data; Node* father, * left, * right; //父,左右孩子 string code; //存储编码 }; typedef Node* Tree; //通过中序,构建编码 void creatCode(Node* node, string s) { if (node != NULL) { creatCode(node->left, s + '0'); if (node->left == NULL && node->right == NULL) //是叶子节点就更新编码 node->code = s; creatCode(node->right, s + '1'); } } int main() { vector<double> w; vector<Node*> node; double tmp; Tree tree; cout << "输入权值,数字后紧跟回车结束:"; do { cin >> tmp; w.push_back(tmp); } while (getchar() != '\n'); sort(w.begin(), w.end(), greater<double>()); //降序排序 for (int i = 0; i < w.size(); i++) node.push_back(new Node(w[i])); vector<Node*> out = node; Node* left, * right; do { right = node.back(); node.pop_back(); //取出最小的两个 left = node.back(); node.pop_back(); node.push_back(new Node(left->data + right->data, left, right)); //将新结点(求和)推进数组中 left->father = node.back(); //更新父结点 right->father = node.back(); out.push_back(node.back()); //存储此结点 for (int i = node.size() - 1; i > 0 && node[i]->data > node[i - 1]->data; i--) //从末尾冒泡,排序 swap(node[i], node[i - 1]); } while (node.size() != 1); //构建树结构 tree = node.front(); //剩余的一个结点即根结点 creatCode(tree, ""); printf("结点\t父结点\t左孩子\t右孩子\t编码\n"); for (int i = 0; i < out.size(); i++) printf("%.2lf\t%.2lf\t%.2lf\t%.2lf\t%s\n", out[i]->data, out[i]->father == NULL ? 0 : out[i]->father->data, out[i]->left == NULL ? 0 : out[i]->left->data, out[i]->right == NULL ? 0 : out[i]->right->data, out[i]->code.c_str()); return 0; }根据代码写流程图

1、用自定义模块建立一个Python程序文件。 2、创建一个fibo、py模块,其中包含两个求Fibonacci数列的函数,然后导入该模块并调用其中的函数。 3、例8-10,先定义函数求∑_(i=1)^n▒i^m ,然后调用该函数求s=∑_(k=1)^100▒k+∑_(k=1)^50▒k^2 +∑_(k=1)^10▒1/k。 4、输出宠物的叫声。 5、定义一个函数,实现两个数的四则运算,要注意有3个参数,分别是运算符和两个用于运算的数字。 6、假设设一个简单的ATM机的取款过程是这样的:首先提示用户输入密码(pakaword),最多只能输入3次,超过3次见提示用户"密码错误,请取卡”结束交易。如果用户密码码正确,再提示用户输入金额(amount). ATM机只能输出100元的纸币,一次取钱数要求最低0元,最高1000元。如果用户输入的金额符合上述要求。则打印出用户取的钱数。最后提示用户“交易完成,请取卡”,否则提示用户重新输入金额。假设用户密码是“888888”。 7、编写一个函数,输入n为偶数时 ,调用函数求1/2+1/4+...+1/n,当输入n为奇数时,调用函数 1/1+1/3+...+1/n。 8、斐波那契数列(Fibonacci sequence)指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)。 9、约瑟夫环问题:n个人组成一个环或者排成一个队,从n个人的第一个人每次报数k,然后剔除。 10、输出裴波那契数列。 11、什么叫递归函数?举例说明。 12、什么叫lambda函数?举例说明。

最新推荐

recommend-type

OPPO 推搜广多业务多场景的统一预估引擎实践 (1).pdf

OPPO 推搜广多业务多场景的统一预估引擎实践 (1).pdf
recommend-type

C#HR人事管理系统源码数据库 MySQL源码类型 WebForm

HR人事管理系统源码 项目描述 人事管理,对用户,部门,职位,进行管理 运行环境:jdk7+tomcat7+mysql+IntelliJ IDEA+maven 使用技术:spring+spring mvc+mybatis+ligerUI+jquery+metronic+jsp
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战指南】MATLAB自适应遗传算法调整:优化流程全掌握

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法基础与MATLAB环境搭建 遗传算法(Genetic Algorithm, GA)是模拟生物进化过程的搜索启发式算法,它使用类似自然选择和遗传学的原理在潜在解空间中搜索最优解。在MATLAB中实现遗传算法需要先搭建合适的环境,设置工作路径,以及了解如何调用和使用遗传算法相关的函数和工具箱。 ## 1.1 遗传算法简介 遗传算法是一种全局优化算法,它的特点是不依赖于问题的梯度信息,适用于搜索复杂、多峰等难
recommend-type

在Spring AOP中,如何实现一个环绕通知并在方法执行前后插入自定义逻辑?

在Spring AOP中,环绕通知(Around Advice)是一种强大的通知类型,它在方法执行前后提供完全的控制,允许开发者在目标方法执行前后插入自定义逻辑。要实现环绕通知,你需要创建一个实现`org.aopalliance.intercept.MethodInterceptor`接口的类,并重写`invoke`方法。 参考资源链接:[Spring AOP:前置、后置、环绕通知深度解析](https://wenku.csdn.net/doc/1tvftjguwg?spm=1055.2569.3001.10343) 下面是一个环绕通知的实现示例,我们将通过Spring配置启用这个