scipy克里金插值
时间: 2024-12-28 19:21:28 浏览: 8
### 使用 SciPy 进行克里金插值
尽管 `SciPy` 并不直接提供专门用于克里金插值的功能模块,但可以借助其优化和其他辅助功能来构建克里金插值器。通常情况下,更推荐使用专门为克里金设计的库如 `PyKrige`[^3] 来完成这项工作。然而,如果确实希望通过 `SciPy` 实现简单的克里金插值,则可以通过编写自定义代码并结合 `scipy.optimize` 和其他子模块来进行。
下面是一个基于 `SciPy` 的简单一维普通克里金插值示例:
```python
import numpy as np
from scipy.spatial.distance import pdist, squareform
from scipy.optimize import minimize
def variogram_model(distance, params):
"""球状变差函数模型"""
sill, range_, nugget = params
gamma = ((distance / range_) ** 2 * (1 - distance / range_)) * \
(distance <= range_)
return sill * gamma + nugget
def kriging_system(x_known, z_known, x_unknown, model_params):
distances = squareform(pdist(np.vstack((x_known, x_unknown)).reshape(-1, 1)))
C = variogram_model(distances[:len(x_known), :len(x_known)], model_params)
c = variogram_model(distances[-1:, :-1], model_params).ravel()
A = np.zeros((C.shape[0]+1, C.shape[1]+1))
A[:-1, :] = 1
A[:, -1] = 1
b = np.hstack([c, [1]])
weights = np.linalg.solve(A, b)[:-1]
estimate = np.dot(weights.T, z_known)
return estimate
if __name__ == "__main__":
# 已知样本点坐标及其对应的观测值
known_points_x = np.array([0., 1., 2., 3., 4.])
observed_values_z = np.random.rand(len(known_points_x))
# 待预测的新位置
new_point_x = 2.5
initial_guesses = [np.var(observed_values_z)*0.9, max(abs(np.diff(known_points_x))), 0.] # 初始猜测参数[sill, range, nugget]
result = minimize(lambda p: sum(((kriging_system(
known_points_x,
observed_values_z,
xi,
p)-zi)**2 for xi, zi in zip(new_point_x.ravel(), observed_values_z))),
initial_guesses,
method='L-BFGS-B',
bounds=((None, None),
(min(np.diff(known_points_x)), max(known_points_x)),
(0, None)))
estimated_value_at_new_location = kriging_system(
known_points_x,
observed_values_z,
new_point_x,
result.x)
print(f"The estimated value at location {new_point_x} is approximately "
f"{estimated_value_at_new_location:.6f}.")
```
此脚本展示了如何创建一个基本的一维普通克里金估计器,并对其进行测试以估算给定新地点处的数据值。需要注意的是,这段代码仅适用于教学目的;对于实际应用而言,建议采用成熟的第三方库如 `PyKrige` 或者探索更多专业的地理信息系统软件中的相应工具。
阅读全文