x_train, x_test, y_train, y_test = train_test_split( data, target, train_size=train_rate, test_size=1-train_rate)
时间: 2023-11-09 08:08:23 浏览: 148
x_train, x_test, y_train, y_test = train_test_split(data, target, train_size=train_rate, test_size=1-train_rate)是一个用于将数据集划分为训练集和测试集的函数。其中,data是数据集,target是目标变量,train_rate是训练集所占比例。该函数会将数据集按照指定的比例划分为训练集和测试集,并返回四个变量:x_train表示训练集的自变量,y_train表示训练集的因变量,x_test表示测试集的自变量,y_test表示测试集的因变量。这个函数可以帮助我们在机器学习中进行模型训练和测试,以便评估模型的性能和泛化能力。
相关问题
逐行解释这段代码 column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']] for i in range(1, 101): X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i) # feature = Spearman(X_train, 0.85) #spearman第一行 # feature = list(feature['feature']) #spearman第二行 # X_train = X_train.loc[:, feature] #spearman第三行 train_index = X_train.index train_column = X_train.columns zscore_scaler = preprocessing.StandardScaler() X_train = zscore_scaler.fit_transform(X_train) X_train = pd.DataFrame(X_train, index=train_index, columns=train_column) # X_test = X_test.loc[:, feature] #spearman第四行 test_index = X_test.index test_column = X_test.columns X_test = zscore_scaler.transform(X_test) X_test = pd.DataFrame(X_test, index=test_index, columns=test_column) train = pd.concat([X_train, y_train], axis=1)
这段代码主要是对数据进行预处理和分割,具体解释如下:
1. `column = list(average.columns)`:将 `average` 数据的列名转换成列表形式,并赋值给 `column`。
2. `data = average.loc[:, column[0]:column[-3]]`:从 `average` 数据中选取所有行和 `column[0]` 到 `column[-3]` 列的数据,赋值给 `data`。这里的 `column[-3]` 表示从最后一列开始往前数第三列。
3. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从 `average` 数据中选取所有行和 `TIMEsurvival'` 以及 `'EVENTdeath'` 两列的数据,赋值给 `target`。这里的 `TIMEsurvival` 表示存活时间,`EVENTdeath` 表示是否死亡。
4. `for i in range(1, 101):`:循环 100 次,每次循环都进行一次数据分割和预处理的操作。
5. `X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i)`:使用 `train_test_split` 方法将 `data` 和 `target` 数据集分别划分为训练集和测试集,其中测试集占 30%,`random_state=i` 表示每次随机划分的结果都是相同的,以保证实验结果可重复。
6. `train_index = X_train.index` 和 `train_column = X_train.columns`:将训练集中的行和列名分别赋值给 `train_index` 和 `train_column` 变量。
7. `zscore_scaler = preprocessing.StandardScaler()`:实例化 `StandardScaler` 类,即进行 Z-score 标准化的对象。
8. `X_train = zscore_scaler.fit_transform(X_train)`:对训练集进行 Z-score 标准化处理。
9. `X_train = pd.DataFrame(X_train, index=train_index, columns=train_column)`:将标准化后的训练集数据转换为 DataFrame 格式,并将行和列名分别设置为 `train_index` 和 `train_column`。
10. `test_index = X_test.index` 和 `test_column = X_test.columns`:将测试集中的行和列名分别赋值给 `test_index` 和 `test_column` 变量。
11. `X_test = zscore_scaler.transform(X_test)`:对测试集进行 Z-score 标准化处理。
12. `X_test = pd.DataFrame(X_test, index=test_index, columns=test_column)`:将标准化后的测试集数据转换为 DataFrame 格式,并将行和列名分别设置为 `test_index` 和 `test_column`。
13. `train = pd.concat([X_train, y_train], axis=1)`:将标准化后的训练集数据和目标变量 `y_train` 沿列方向合并,形成新的训练集 `train`。
import numpy as np import pandas as pd from lreg import LogisticRegression test_length = 74 nofeats = 4 # ----------------------------------------- # data: # for the iris dataset, we split the target variable into 3 dummy variables, and the features are transformed in standard scale with mean 0 and std 1 (see preprocess1.py and preprocess4.py) data = pd.read_csv('iris_dummy.csv') data = np.array(data) m,n = data.shape np.random.shuffle(data) data_test = data[0:test_length] X_test = data_test[:,0:nofeats] Y_test0 = data_test[:,nofeats] Y_test1 = data_test[:,nofeats+1] Y_test2 = data_test[:,nofeats+2] Y_test_all = data_test[:,nofeats+3] Y_test0 = Y_test0.T Y_test1 = Y_test1.T Y_test2 = Y_test2.T Y_test_all = Y_test_all.T data_train = data[test_length:m] X_train = data_train[:, 0:nofeats] Y_train0 = data_train[:,nofeats] Y_train1 = data_train[:,nofeats+1] Y_train2 = data_train[:,nofeats+2] Y_train0 = Y_train0.T Y_train1 = Y_train1.T Y_train2 = Y_train2.T请一行一行的解释代码
import numpy as np
这一行代码导入了名为 numpy 的 Python 库,并将其重命名为 np。numpy 是 Python 中用于数值计算的重要库,提供了丰富的数学函数和数据结构,如数组、矩阵等。
import pandas as pd
这一行代码导入了名为 pandas 的 Python 库,并将其重命名为 pd。pandas 是 Python 中用于数据处理和分析的重要库,提供了数据读取、清洗、转换、分组、聚合等功能,支持的数据结构包括 Series 和 DataFrame。
from lreg import LogisticRegression
这一行代码从 lreg 库中导入了 LogisticRegression 类。lreg 库是自己定义的库,可能包含了一些自定义的机器学习算法。
test_length = 74
nofeats = 4
这两行代码定义了两个变量 test_length 和 nofeats,分别表示测试集的大小和特征的数量。
# -----------------------------------------
# data:
# for the iris dataset, we split the target variable into 3 dummy variables, and the features are transformed in standard scale with mean 0 and std 1 (see preprocess1.py and preprocess4.py)
这段注释说明了数据集的处理方式,将鸢尾花数据集的目标变量分成了 3 个虚拟变量,并使用标准缩放将特征转换为均值为 0,标准差为 1 的形式。具体的处理过程可以参考 preprocess1.py 和 preprocess4.py。
data = pd.read_csv('iris_dummy.csv')
data = np.array(data)
m,n = data.shape
np.random.shuffle(data)
这几行代码读取了名为 iris_dummy.csv 的 CSV 文件,并将其转换为 numpy 数组。然后使用 np.random.shuffle() 函数随机打乱数据集。
data_test = data[0:test_length]
X_test = data_test[:,0:nofeats]
Y_test0 = data_test[:,nofeats]
Y_test1 = data_test[:,nofeats+1]
Y_test2 = data_test[:,nofeats+2]
Y_test_all = data_test[:,nofeats+3]
这几行代码将数据集分为测试集和训练集,并将测试集的特征和目标变量分别存储在 X_test、Y_test0、Y_test1、Y_test2 和 Y_test_all 中。其中,X_test 是测试集的特征矩阵,Y_test0、Y_test1 和 Y_test2 分别是测试集的三个虚拟变量,Y_test_all 是测试集的原始目标变量。
Y_test0 = Y_test0.T
Y_test1 = Y_test1.T
Y_test2 = Y_test2.T
Y_test_all = Y_test_all.T
这几行代码将测试集的目标变量转置,使得其变成了行向量,方便后续的计算。
data_train = data[test_length:m]
X_train = data_train[:, 0:nofeats]
Y_train0 = data_train[:,nofeats]
Y_train1 = data_train[:,nofeats+1]
Y_train2 = data_train[:,nofeats+2]
这几行代码将数据集的剩余部分作为训练集,并将训练集的特征和目标变量分别存储在 X_train、Y_train0、Y_train1 和 Y_train2 中。
Y_train0 = Y_train0.T
Y_train1 = Y_train1.T
Y_train2 = Y_train2.T
这几行代码将训练集的目标变量转置,使得其变成了行向量,方便后续的计算。
阅读全文