x_train, x_test, y_train, y_test = train_test_split(x_data,y_data, test_size=0.3, random_state=33)
时间: 2023-10-19 20:25:06 浏览: 96
train_test_split()函数用于分割数据集,将给定数据集分为训集和测试集。根引用的描述train_test_split()函数的参数包括Xy(特征和目标变量)、_size(测试集大小)、random_state(随机种子)、shuffle(是否对数据进行洗牌)和stratify(是否按照y的类别进行分层抽样)。
根据您提供的代码,x_data和y_data是输入的特征和目标变量,而test_size=0.3表示测试集占总数据的30%,random_state=33表示使用固定的随机种子33来保证每次运行的结果一致。
因此,根据给定的代码,x_train、x_test、y_train和y_test的赋值可以表示为 x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, random_state=33)。这将根据指定的参数将输入数据集进行分割,并将分割后的结果分别赋值给x_train、x_test、y_train和y_test。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [关于x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)](https://blog.csdn.net/qq_42671928/article/details/121796069)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [sklearn中的train_test_split()函数解析](https://blog.csdn.net/W153633/article/details/126312955)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文