y_pred = nn.forward(data_pred)
时间: 2024-03-29 19:40:50 浏览: 54
这行代码是使用训练好的神经网络模型 `nn` 对预处理后的数据 `data_pred` 进行前向传播(forward propagation),从而得到预测结果 `y_pred`。
`nn.forward(data_pred)` 中的 `forward` 方法是 `NeuralNetwork` 类中的一个方法,它实现了神经网络的前向传播过程,将输入数据 `data_pred` 传递到神经网络中,依次经过多个层的计算,最终得到输出结果 `y_pred`。
具体来说,`forward` 方法会调用 `NeuralNetwork` 类中的 `forward_step` 方法,对输入数据进行一次前向传播计算,并将计算结果传递到下一层,直到最后一层输出结果。因此,`y_pred` 是神经网络模型对输入数据 `data_pred` 的预测结果。
相关问题
def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.dropout=nn.Dropout(0.5) self.fc4 = nn.Linear(24, 48) self.fc5 = nn.Linear(48, 96) self.fc6 = nn.Linear(96, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.dropout(x) x = nn.functional.relu(x) x = self.fc4(x) x = nn.functional.relu(x) x = self.fc5(x) x = nn.functional.relu(x) x = self.fc6(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=0.05) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv') 如果我想要使用学习率调度器应该怎么操作
如果您想使用学习率调度器,可以先创建一个学习率调度器对象,例如StepLR或ReduceLROnPlateau,然后在每个epoch或一定的步骤之后,通过调用学习率调度器对象的step方法来更新优化器的学习率。例如,对于StepLR,可以按照以下方式操作:
```
# 创建学习率调度器对象
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
for epoch in range(1,50):
# 预测值
y_pred=model(x_train)
# 损失值
loss=loss_fn(y_pred,y_train)
# 反向传播
optimizer.zero_grad()
loss.backward()
# 更新学习率
scheduler.step()
optimizer.step()
print('epoch',epoch,'loss',loss)
```
在这个例子中,我们使用StepLR来每10个epoch将学习率乘以0.1。您可以根据需要自定义step_size和gamma值。
请帮我评估一下,我一共有9000行训练数据,代码如下:def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.fc4 = nn.Linear(24, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = nn.functional.relu(x) x = self.fc4(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=1) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv')
根据你提供的代码,我认为你的模型可能存在一些问题。具体来说:
1. 数据处理部分:你的代码中首先对数据进行了透视操作,然后将数据分成了x_train和y_train两部分。x_train中只包含了前三列数据,而y_train中只包含了最后一列数据。这样处理可能会导致信息的丢失,因为你只考虑了一部分特征。建议你重新考虑数据的处理方式,确保包含了所有重要的特征。
2. 模型设计部分:你的模型是一个四层的神经网络,其中包含了多个线性层和激活函数。然而,你的模型可能过于简单,无法捕捉到数据的复杂性。建议你增加模型的宽度和深度,或者使用更加复杂的神经网络结构,以提高模型的表现。
3. 训练部分:你使用了MSE损失函数和SGD优化器来训练模型。这些选择可能是合理的,但是你的代码中没有对模型进行交叉验证或者其他的调参操作,这可能导致模型过拟合或欠拟合。建议你使用交叉验证或者其他的评估方法,以便更好地评估模型的性能。
综上所述,我建议你重新考虑数据处理、模型设计和训练的方式,以提高模型的表现。
阅读全文