X_train, X_val, y_train, y_val = train_test_split(data_X, data_Y, test_size=500, random_state=123)
时间: 2023-10-30 13:51:03 浏览: 122
这段代码使用了 `train_test_split` 函数,将 `data_X` 和 `data_Y` 分别划分为训练集和验证集。其中,`test_size=500` 表示将 500 条数据划分为验证集,其余数据作为训练集。`random_state=123` 表示设置随机种子为 123,保证每次运行代码时划分的结果相同。最终,函数返回四个变量,分别为 `X_train`、`X_val`、`y_train` 和 `y_val`。其中,`X_train` 和 `y_train` 分别为训练集的输入和输出,`X_val` 和 `y_val` 分别为验证集的输入和输出。
相关问题
shape_num = input_data.shape X_row = input_data.iloc[:, :shape_num[1]-1] Y_row = input_data.iloc[:, shape_num[1]-1] train_x, val_test_x, train_y, val_test_y = train_test_split(X_row, Y_row, test_size = 0.3, shuffle = True) val_x, test_x, val_y, test_y = train_test_split(val_test_x, val_test_y, test_size = 0.5, shuffle = True)
这段代码是在对输入数据进行预处理,主要是将输入数据划分为训练集、验证集和测试集。具体来说,首先根据输入数据的形状获取输入数据的列数,然后将输入数据的前shape_num[1]-1列作为X,最后一列作为Y。接着,使用train_test_split函数将X和Y按照一定比例(这里是测试集占30%)划分为训练集和剩下的数据。再次使用train_test_split函数将剩下的数据按照一定比例(这里是验证集和测试集各占剩余数据的一半)划分为验证集和测试集。其中,shuffle参数为True表示在划分数据时进行随机打乱。这样处理后,就可以将训练集、验证集和测试集用于模型的训练、验证和测试了。
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 数据加载和预处理 train_data = pd.read_csv('D:/wy/train.csv') test_data = pd.read_csv('D:/wy/test.csv') # 特征选择和处理 features = ['uid', 'iid'] target = 'score' X_train = train_data[features] y_train = train_data[target] X_test = test_data[features] # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # 模型训练 model = LogisticRegression() model.fit(X_train, y_train) # 模型评估 y_val_pred = model.predict(X_val) accuracy = accuracy_score(y_val, y_val_pred) print("Validation Accuracy:", accuracy) # 预测和推荐 y_test_pred = model.predict(X_test) test_data['score'] = y_test_pred recommended_movies = test_data.sort_values(by='score', ascending=False) # 结果保存 recommended_movies[['uid', 'iid', 'score']].to_csv('D:/forecast_result.csv', index=False)
这段代码使用了Pandas和Scikit-learn库来构建一个基于逻辑回归的电影推荐系统。首先,它读取训练和测试数据,然后选择了一些特征。接着,训练数据被划分为训练集和验证集,用于训练和评估模型。在这里,模型采用了逻辑回归算法,并使用训练数据进行了拟合。最后,模型被用于预测测试数据并生成推荐结果。推荐结果被保存在一个CSV文件中。
阅读全文