请帮我解读这段代码if __name__ == "__main__": data_split_train_val_test(data_root='data', data_set='human') data_split_train_val_test(data_root='data', data_set='celegans') GNNDataset(root='data/human') GNNDataset(root='data/celegans')
时间: 2024-04-16 08:25:55 浏览: 113
这段代码中的`if __name__ == "__main__"`条件语句用于判断当前模块是否作为主程序运行。
在这段代码中,如果当前模块是作为主程序运行的,将会执行以下操作:
1. 调用`data_split_train_val_test`函数,传入参数`data_root='data'`和`data_set='human'`,进行数据集的训练、验证和测试集划分操作。
2. 调用`data_split_train_val_test`函数,传入参数`data_root='data'`和`data_set='celegans'`,进行数据集的训练、验证和测试集划分操作。
3. 创建`GNNDataset`对象,传入参数`root='data/human'`,用于处理名为'human'的数据集。
4. 创建`GNNDataset`对象,传入参数`root='data/celegans'`,用于处理名为'celegans'的数据集。
总之,这段代码的作用是在当前模块作为主程序运行时执行一些特定的操作,包括数据集的划分和创建相关对象。
相关问题
可以帮我把这个代码框架完善一下吗
当然可以,以下是一个更完整的代码框架,包括更详细的注释和一些常用的图像处理和机器学习算法,希望能够帮到你。由于篇幅较长,我将代码分为几个部分进行介绍。如果你有任何问题或需要更多的帮助,请随时告诉我。
## 导入所需的库和模块
```python
import cv2
import numpy as np
import os
import random
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 设置随机数种子,以便结果可重复
random.seed(42)
np.random.seed(42)
tf.random.set_seed(42)
```
## 定义一些常量和参数
```python
# 定义一些常量和参数
IMAGE_SIZE = 224
BATCH_SIZE = 64
EPOCHS = 50
LEARNING_RATE = 0.001
WEIGHT_DECAY = 0.0001
NUM_CLASSES = 2
```
## 定义一个函数来加载图像数据集
```python
# 定义一个函数来加载图像数据集
def load_dataset(data_dir):
# 读取图像文件并将其转换为numpy数组
images = []
for filename in os.listdir(data_dir):
if filename.endswith('.jpg'):
image = cv2.imread(os.path.join(data_dir, filename))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images.append(image)
images = np.array(images)
# 读取标注文件并将其转换为numpy数组
labels = []
with open(os.path.join(data_dir, 'labels.txt'), 'r') as f:
for line in f:
label = int(line.strip())
labels.append(label)
labels = np.array(labels)
# 返回图像和标注数据
return images, labels
```
## 定义一个函数来预处理图像数据
```python
# 定义一个函数来预处理图像数据
def preprocess_image(image):
# 将图像缩放到指定的大小
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
# 将图像进行归一化处理
image = image / 255.0
# 返回预处理后的图像
return image
```
## 定义一个函数来创建模型
```python
# 定义一个函数来创建模型
def create_model():
# 使用预训练的ResNet50模型作为基础模型
base_model = keras.applications.ResNet50(
include_top=False, # 不包含全连接层
weights='imagenet',
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3)
)
# 冻结基础模型的所有层
base_model.trainable = False
# 添加全局平均池化层、全连接层和输出层
x = layers.GlobalAveragePooling2D()(base_model.output)
x = layers.Dense(256, activation='relu')(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(NUM_CLASSES, activation='softmax')(x)
# 构建模型
model = keras.Model(inputs=base_model.input, outputs=outputs)
# 返回模型
return model
```
## 定义一个函数来训练模型
```python
# 定义一个函数来训练模型
def train_model(model, images, labels):
# 编译模型
optimizer = keras.optimizers.Adam(learning_rate=LEARNING_RATE)
loss_fn = keras.losses.SparseCategoricalCrossentropy()
metrics = [keras.metrics.SparseCategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
# 拆分数据集为训练集和验证集
num_samples = images.shape[0]
indices = np.arange(num_samples)
np.random.shuffle(indices)
split_index = int(0.8 * num_samples)
train_indices = indices[:split_index]
val_indices = indices[split_index:]
train_images = images[train_indices]
train_labels = labels[train_indices]
val_images = images[val_indices]
val_labels = labels[val_indices]
# 定义回调函数
checkpoint_callback = keras.callbacks.ModelCheckpoint(
'best_model.h5', save_best_only=True, save_weights_only=True)
early_stopping_callback = keras.callbacks.EarlyStopping(
patience=5, restore_best_weights=True)
# 训练模型
history = model.fit(
train_images, train_labels,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(val_images, val_labels),
callbacks=[checkpoint_callback, early_stopping_callback])
# 返回训练历史记录
return history
```
## 定义一个函数来测试模型
```python
# 定义一个函数来测试模型
def test_model(model, images, labels):
# 对图像进行预处理
preprocessed_images = []
for image in images:
preprocessed_image = preprocess_image(image)
preprocessed_images.append(preprocessed_image)
preprocessed_images = np.array(preprocessed_images)
# 使用模型进行预测
y_pred = model.predict(preprocessed_images)
y_pred = np.argmax(y_pred, axis=1)
# 计算预测结果与标注之间的准确率和其他指标
accuracy = np.mean(y_pred == labels)
# TODO:计算其他指标,如精确率、召回率、F1值等等
# 返回测试结果
return accuracy
```
## 主函数
```python
# 主函数
if __name__ == '__main__':
# 加载数据集
data_dir = 'path/to/dataset'
images, labels = load_dataset(data_dir)
# 预处理图像数据
preprocessed_images = []
for image in images:
preprocessed_image = preprocess_image(image)
preprocessed_images.append(preprocessed_image)
preprocessed_images = np.array(preprocessed_images)
# 创建模型
model = create_model()
# 训练模型
history = train_model(model, preprocessed_images, labels)
# 测试模型
accuracy = test_model(model, preprocessed_images, labels)
print('Accuracy:', accuracy)
# 保存模型和训练历史记录
model.save('model.h5')
np.save('history.npy', history.history)
```
写一个python Flask销售预测系统,系统有一个suanfa.py文件,该文件的作用:先读取shuju.csv(共有24条数据,包含Year、Month和TotalPrice三个属性),然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback):将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4,然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数,定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE,保存模型。有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年份和月份后点击预测按钮系统就开始调用保存好的模型来对所选月份的销售额进行预测,然后将预测结果返回到日期选择框下面的结果返回框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码
这是一个比较完整的 Flask 销售预测系统,包含了前端页面和后端算法模型。使用了 Bootstrap 和 LayUI 两个前端框架,用 PyTorch 框架实现了 LSTM 模型进行销售预测。
suanfa.py 文件:
```python
import torch
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
def split_data(data, lookback):
data_raw = data.to_numpy()
data = []
# create all possible sequences of length lookback
for index in range(len(data_raw) - lookback):
data.append(data_raw[index: index + lookback])
data = np.array(data)
test_set_size = int(np.round(0.2*data.shape[0]))
train_set_size = data.shape[0] - (test_set_size)
x_train = torch.from_numpy(np.array(data[:train_set_size,:-1,:]))
y_train = torch.from_numpy(np.array(data[:train_set_size,-1,:]))
x_test = torch.from_numpy(np.array(data[train_set_size:,:-1,:]))
y_test = torch.from_numpy(np.array(data[train_set_size:,-1,:]))
return x_train.float(), y_train.float(), x_test.float(), y_test.float()
class LSTM(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
super(LSTM, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = torch.nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = torch.nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
if __name__ == '__main__':
data = pd.read_csv('shuju.csv')
scaler = MinMaxScaler(feature_range=(-1, 1))
data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1,1))
x_train, y_train, x_test, y_test = split_data(data[['Year','Month','TotalPrice']], 4)
input_dim = 3
hidden_dim = 12
num_layers = 1
output_dim = 1
num_epochs = 1000
model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for t in range(num_epochs):
y_pred = model(x_train)
loss = loss_fn(y_pred, y_train)
if t % 100 == 0:
print("Epoch ", t, "MSE: ", loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model_lstm.pth')
```
predict.html 文件:
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>销售预测系统</title>
<link rel="stylesheet" href="https://cdn.bootcdn.net/ajax/libs/layui/2.5.7/css/layui.min.css">
<link rel="stylesheet" href="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/4.5.3/css/bootstrap.min.css">
<script src="https://cdn.bootcdn.net/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://cdn.bootcdn.net/ajax/libs/layui/2.5.7/layui.min.js"></script>
<script src="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/4.5.3/js/bootstrap.min.js"></script>
</head>
<body>
<div class="container">
<div class="row justify-content-center mt-5">
<div class="col-md-6">
<div class="form-group">
<label for="year">年份:</label>
<select class="form-control" id="year">
<option value="2014">2014</option>
<option value="2015">2015</option>
<option value="2016">2016</option>
<option value="2017">2017</option>
<option value="2018">2018</option>
<option value="2019">2019</option>
<option value="2020">2020</option>
</select>
</div>
<div class="form-group">
<label for="month">月份:</label>
<select class="form-control" id="month">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
<option value="9">9</option>
<option value="10">10</option>
<option value="11">11</option>
<option value="12">12</option>
</select>
</div>
<div class="form-group">
<button class="btn btn-primary" onclick="predict()">销售额预测</button>
</div>
<div class="form-group">
<label for="result">预测结果:</label>
<input type="text" class="form-control" id="result" disabled>
</div>
</div>
</div>
</div>
<script>
function predict() {
var year = $('#year').val();
var month = $('#month').val();
$.ajax({
url: '/predict',
method: 'POST',
data: {
'year': year,
'month': month
},
success: function(response) {
$('#result').val(response);
}
});
}
</script>
</body>
</html>
```
app.py 文件:
```python
from flask import Flask, render_template, request, jsonify
import suanfa
import torch
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
app = Flask(__name__)
@app.route('/')
def index():
return render_template('predict.html')
@app.route('/predict', methods=['POST'])
def predict():
year = int(request.form['year'])
month = int(request.form['month'])
data = pd.read_csv('shuju.csv')
scaler = MinMaxScaler(feature_range=(-1, 1))
data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1,1))
x_train, y_train, x_test, y_test = suanfa.split_data(data[['Year','Month','TotalPrice']], 4)
input_dim = 3
hidden_dim = 12
num_layers = 1
output_dim = 1
model = suanfa.LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
model.load_state_dict(torch.load('model_lstm.pth'))
test_inputs = torch.from_numpy(np.array(data[['Year','Month','TotalPrice']][-3:].values))
test_inputs = test_inputs.view(1, -1, 3).float()
model.eval()
y_pred = scaler.inverse_transform(model(test_inputs).detach().numpy())
return jsonify(round(float(y_pred)), 2)
if __name__ == '__main__':
app.run(debug=True)
```
注意:在运行之前需要将 `shuju.csv` 文件和 `model_lstm.pth` 文件放到与 `app.py` 文件同一目录下。另外,需要安装 Flask 和 PyTorch 库,可以使用以下命令进行安装:
```shell
pip install flask torch pandas scikit-learn
```
阅读全文
相关推荐
















