static const GLfloat vertices[]{ //顶点坐标 -1.0f,-1.0f, -1.0f,+1.0f, +1.0f,+1.0f, +1.0f,-1.0f, //纹理坐标 0.0f,1.0f, 0.0f,0.0f, 1.0f,0.0f, 1.0f,1.0f, };

时间: 2024-04-28 19:25:49 浏览: 24
这段代码定义了一个包含顶点坐标和纹理坐标的顶点数组。顶点数组中的每个顶点都包含了两个坐标值:一个是顶点在三维空间中的坐标,另一个是该顶点对应的纹理坐标。 其中,vertices[] 数组的前四个元素表示四个顶点的坐标,每个顶点由两个 GLfloat 类型的数值表示。这里使用的是二维平面上的坐标,因此每个顶点只需要两个数值。 vertices[] 数组的后四个元素表示四个顶点对应的纹理坐标,同样是由两个 GLfloat 类型的数值表示。纹理坐标通常使用 UV 坐标系,即 x 轴表示水平方向,y 轴表示垂直方向。在这里,(0,0)表示纹理图像的左下角,(1,1)表示纹理图像的右上角。 这个顶点数组通常会被传递给OpenGL的顶点缓冲区对象(VBO)进行处理,以便在渲染时使用。顶点缓冲区对象可以大大提高渲染效率,因为它可以在GPU上缓存顶点数据,从而减少数据传输和CPU-GPU之间的通信开销。
相关问题

void drawSquareAnnulus() { // Bind vertex buffer and reserve space. glBindBuffer(GL_ARRAY_BUFFER, buffer[VERTICES]); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices) + sizeof(colors), NULL, GL_STATIC_DRAW); // Copy vertex coordinates data into first half of vertex buffer. glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices); // Copy vertex color data into second half of vertex buffer. glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertices), sizeof(colors), colors); // Bind and fill indices buffer. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer[INDICES]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(stripIndices), stripIndices, GL_STATIC_DRAW); glVertexPointer(3, GL_FLOAT, 0, 0); glColorPointer(3, GL_FLOAT, 0, (void*)(sizeof(vertices))); }将上述代码改成绘制圆形的

要绘制圆形,可以使用三角扇或三角形条带来逼近圆形。以下是使用三角扇绘制圆形的示例代码: ``` void drawCircle() { const int numSegments = 32; // 圆形的线段数 const float radius = 1.0f; // 圆形半径 // 顶点坐标和颜色数组 GLfloat vertices[(numSegments + 2) * 3]; GLfloat colors[(numSegments + 2) * 3]; // 圆心点 vertices[0] = 0.0f; vertices[1] = 0.0f; vertices[2] = 0.0f; colors[0] = 1.0f; colors[1] = 1.0f; colors[2] = 1.0f; // 计算圆周上的点的坐标和颜色 for (int i = 0; i <= numSegments; i++) { float angle = i * 2.0f * M_PI / numSegments; int offset = (i + 1) * 3; vertices[offset] = cos(angle) * radius; vertices[offset + 1] = sin(angle) * radius; vertices[offset + 2] = 0.0f; colors[offset] = 1.0f; colors[offset + 1] = 1.0f; colors[offset + 2] = 1.0f; } // 绘制三角扇 glBindBuffer(GL_ARRAY_BUFFER, buffer[VERTICES]); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices) + sizeof(colors), NULL, GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices); glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertices), sizeof(colors), colors); glVertexPointer(3, GL_FLOAT, 0, 0); glColorPointer(3, GL_FLOAT, 0, (void*)(sizeof(vertices))); glDrawArrays(GL_TRIANGLE_FAN, 0, numSegments + 2); } ``` 注意到圆形的顶点数是固定的,因此在画圆形时不需要使用索引缓冲区。在顶点坐标和颜色数组中,第一个顶点是圆心,其它顶点按逆时针顺序排列在圆周上。最后使用 `glDrawArrays` 函数绘制三角扇即可。

opengl ES传入指定位置坐标在传入坐标的位置进行马赛克处理其他位置不进行马赛克处理完整代码例子

以下是一个简单的OpenGL ES马赛克处理的例子代码: ```c #include <GLES2/gl2.h> // 马赛克处理的像素数 #define MOSAIC_SIZE 10 // 顶点着色器代码 const char* vertexShaderCode = "attribute vec4 a_Position;\n" "void main() {\n" " gl_Position = a_Position;\n" "}\n"; // 片段着色器代码 const char* fragmentShaderCode = "precision mediump float;\n" "uniform sampler2D u_Texture;\n" "uniform vec2 u_MosaicSize;\n" "varying vec2 v_TexCoord;\n" "void main() {\n" " vec2 mosaicCoord = vec2(floor(v_TexCoord.x / u_MosaicSize.x), floor(v_TexCoord.y / u_MosaicSize.y));\n" " vec2 mosaicTexCoord = vec2(mosaicCoord.x * u_MosaicSize.x, mosaicCoord.y * u_MosaicSize.y);\n" " gl_FragColor = texture2D(u_Texture, mosaicTexCoord);\n" "}\n"; // 顶点坐标数据 GLfloat vertices[] = { -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, }; // 纹理坐标数据 GLfloat texCoords[] = { 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, }; // 坐标索引数据 GLushort indices[] = {0, 1, 2, 0, 2, 3}; // 纹理ID GLuint textureId; // 着色器程序ID GLuint programId; void initTexture() { // 创建纹理 glGenTextures(1, &textureId); glBindTexture(GL_TEXTURE_2D, textureId); // 设置纹理参数 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 加载图片并设置纹理数据 int width, height, channels; unsigned char* image = stbi_load("image.png", &width, &height, &channels, STBI_rgb_alpha); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, image); stbi_image_free(image); } void initShader() { // 创建顶点着色器对象 GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShaderId, 1, &vertexShaderCode, nullptr); glCompileShader(vertexShaderId); // 创建片段着色器对象 GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShaderId, 1, &fragmentShaderCode, nullptr); glCompileShader(fragmentShaderId); // 创建着色器程序对象 programId = glCreateProgram(); glAttachShader(programId, vertexShaderId); glAttachShader(programId, fragmentShaderId); glBindAttribLocation(programId, 0, "a_Position"); glBindAttribLocation(programId, 1, "a_TexCoord"); glLinkProgram(programId); // 获取uniform变量的位置 GLint mosaicSizeLocation = glGetUniformLocation(programId, "u_MosaicSize"); // 设置uniform变量的值 glUniform2f(mosaicSizeLocation, MOSAIC_SIZE, MOSAIC_SIZE); } void initVertexBuffer() { // 创建顶点缓冲区对象 GLuint vertexBufferId; glGenBuffers(1, &vertexBufferId); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferId); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // 创建纹理坐标缓冲区对象 GLuint texCoordBufferId; glGenBuffers(1, &texCoordBufferId); glBindBuffer(GL_ARRAY_BUFFER, texCoordBufferId); glBufferData(GL_ARRAY_BUFFER, sizeof(texCoords), texCoords, GL_STATIC_DRAW); // 创建索引缓冲区对象 GLuint indexBufferId; glGenBuffers(1, &indexBufferId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); // 设置顶点属性指针 GLuint positionLocation = glGetAttribLocation(programId, "a_Position"); glEnableVertexAttribArray(positionLocation); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferId); glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, nullptr); // 设置纹理坐标属性指针 GLuint texCoordLocation = glGetAttribLocation(programId, "a_TexCoord"); glEnableVertexAttribArray(texCoordLocation); glBindBuffer(GL_ARRAY_BUFFER, texCoordBufferId); glVertexAttribPointer(texCoordLocation, 2, GL_FLOAT, GL_FALSE, 0, nullptr); } void render() { // 清空颜色缓冲区 glClear(GL_COLOR_BUFFER_BIT); // 绑定纹理 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textureId); // 绘制矩形 glUseProgram(programId); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, nullptr); } int main() { // 初始化OpenGL ES上下文 // 初始化纹理 initTexture(); // 初始化着色器程序 initShader(); // 初始化顶点缓冲区 initVertexBuffer(); // 渲染场景 render(); return 0; } ``` 在片段着色器中,我们使用了一个uniform变量`u_MosaicSize`来表示马赛克处理的像素数,计算出当前像素所在的马赛克块的坐标,然后再根据马赛克块的坐标计算出当前像素在马赛克块中的坐标,最后使用该坐标取纹理颜色,从而实现马赛克处理。在初始化着色器程序时,我们使用`glUniform2f`函数将`u_MosaicSize`的值设置为`MOSAIC_SIZE`。

相关推荐

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S