function [cost,S] = costgraph(KH,StepSigma,DirSigma,Sigma) % [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); global nbcall nbcall=nbcall+1; Sigma = Sigma + StepSigma * DirSigma;%更新γ=γ+下降方向*步长 K_total = sumKbeta(KH, Sigma.^2);%更新最优图 [S, cost]= solve_S(K_total);%更新图G和F

时间: 2024-01-24 11:20:15 浏览: 54
这段代码是一个 MATLAB 函数,它的作用是计算图的代价并更新图的结构。函数的输入参数包括: 1. KH:一个矩阵,表示图中的相似度矩阵; 2. StepSigma:一个标量值,表示更新步长; 3. DirSigma:一个向量,表示更新方向; 4. Sigma:一个向量,表示当前的γ值。 函数的输出参数包括: 1. cost:一个标量值,表示图的代价; 2. S:一个向量,表示更新后的图结构。 在函数中,首先通过将γ值更新为 γ = γ + 下降方向 × 步长,来更新γ值。然后,通过 sumKbeta 函数计算更新后的最优图,然后通过 solve_S 函数求解图 G 和 F,并将代价和更新后的图结构作为输出返回。
相关问题

详细解释这段代码function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) gold = (sqrt(5)+1)/2 ; SigmaNew = SigmaInit= Sigma ; NormGrad = sum(abs(GradNew)); CostOld=CostNew=GradNew/NormGrad; [val,coord] = max(SigmaNew) ; GradNew = GradNew - GradNew(coord); desc = - GradNew.* ( (SigmaNew>0) | (GradNew<0) ); desc(coord) = - sum(desc); stepmin = 0; costmin = CostOld; costmax = 0; ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end

这段代码实现了一个图更新算法,用于优化一个图的布局。具体而言,输入参数包括: - KH: 图的邻接矩阵; - Sigma: 布局矩阵,即每个点在二维空间中的坐标; - GradNew: 梯度向量,表示当前布局的梯度; - CostNew: 当前布局的代价; - option: 控制图更新算法的参数。 根据输入参数,该算法首先计算出当前梯度的模长NormGrad,并将GradNew除以该模长,以避免梯度大小对更新步长的影响。然后,算法依次进行以下步骤: 1. 初始化SigmaNew为当前布局,SigmaInit为当前布局的备份。 2. 找到SigmaNew中的最大值和对应的坐标coord,将GradNew中在该坐标上的梯度从GradNew中减去,以避免在该坐标方向上的更新。 3. 计算更新方向desc,其中对于SigmaNew中小于等于0的元素,不需要在该维度上进行更新;对于GradNew中小于0的元素,也不需要在该维度上进行更新。 4. 设置stepmin和stepmax为合适的初值,并计算在stepmax处的代价costmax和在stepmin处的代价costmin。如果desc中没有小于0的元素,则返回SigmaNew作为更新后的布局。 5. 在[stepmin, stepmax]区间内使用黄金分割法寻找代价最小的更新步长。具体而言,算法将该区间分成左右两个子区间,计算在每个子区间的中点处的代价,然后选择代价更小的子区间继续寻找。这个过程一直进行,直到更新步长的变化量小于设定的阈值goldensearch_deltmax或者步长stepmax小于一个极小值eps。 6. 最后返回更新后的布局矩阵Sigma、更新后的代价CostNew和更新后的图S。

model = CreateModel1(); %creates the model of the problem nVar = model.nVar; %indicates number of decision variables VarSize = [1 nVar] %size of the decision variable matrix CostFunction = @(q) MyCost(q,model); %cost function

根据你提供的代码,我可以看到以下几个步骤: 1. 调用 `CreateModel1()` 函数来创建问题的模型。由于我无法查看函数的具体实现,所以无法提供关于模型创建的详细信息。 2. 使用 `model.nVar` 获取决策变量的数量,并将其赋值给变量 `nVar`。 3. 创建一个大小为 `[1 nVar]` 的 `VarSize` 矩阵,作为决策变量矩阵的大小。 4. 使用匿名函数 `@(q) MyCost(q,model)` 定义代价函数,其中 `q` 是决策变量向量。请注意,代价函数 `MyCost(q,model)` 需要根据具体问题进行实现。这个函数将在优化过程中被调用,计算给定决策变量向量 `q` 的成本值。 以上是根据你提供的代码所能理解到的内容。如果你有更多的问题或需要进一步的解释,请随时提问。

相关推荐

最新推荐

recommend-type

《MATLAB的S-Function编写指导》——完整版.pdf

MATLAB的S-Function是一种强大的工具,用于在Simulink环境中创建自定义的动态系统模块。它允许用户利用C、C++或Fortran等底层语言的性能,来实现Simulink无法直接处理的复杂算法或特定硬件接口。这份《MATLAB的S-...
recommend-type

JS禁用右键、禁用Ctrl+u、禁用Ctrl+s、禁用F12的实现代码

本文主要探讨如何使用JavaScript实现禁用右键、禁用Ctrl+U、禁用Ctrl+S以及禁用F12键的功能。 首先,禁用右键是通过监听`oncontextmenu`事件来实现的。当用户在网页上点击右键时,浏览器会触发这个事件。下面是一个...
recommend-type

5153-微信小程序个人日程安排微信小程序的实现+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha