退火算法旅行商问题python程序
时间: 2024-05-19 11:08:30 浏览: 80
退火算法是一种基于模拟退火过程的优化算法,常用于解决旅行商问题(Traveling Salesman Problem,TSP)。TSP是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商能够访问所有城市并回到起始城市。
以下是一个使用Python实现的退火算法解决TSP的示例程序:
```python
import random
import math
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
# 计算路径的总长度
def path_length(path, cities):
total_length = 0
for i in range(len(path)):
city1 = cities[path[i]]
city2 = cities[path[(i + 1) % len(path)]]
total_length += distance(city1, city2)
return total_length
# 生成初始解
def generate_initial_solution(num_cities):
return list(range(num_cities))
# 生成新解
def generate_neighbor_solution(solution):
new_solution = solution.copy()
index1 = random.randint(0, len(solution) - 1)
index2 = random.randint(0, len(solution) - 1)
new_solution[index1], new_solution[index2] = new_solution[index2], new_solution[index1]
return new_solution
# 判断是否接受新解
def accept_new_solution(old_length, new_length, temperature):
if new_length < old_length:
return True
else:
probability = math.exp((old_length - new_length) / temperature)
return random.random() < probability
# 退火算法
def simulated_annealing(cities, initial_temperature, cooling_rate, max_iterations):
current_solution = generate_initial_solution(len(cities))
best_solution = current_solution.copy()
current_length = path_length(current_solution, cities)
best_length = current_length
temperature = initial_temperature
for i in range(max_iterations):
new_solution = generate_neighbor_solution(current_solution)
new_length = path_length(new_solution, cities)
if accept_new_solution(current_length, new_length, temperature):
current_solution = new_solution
current_length = new_length
if current_length < best_length:
best_solution = current_solution.copy()
best_length = current_length
temperature *= cooling_rate
return best_solution, best_length
# 示例用法
cities = [(0, 0), (1, 2), (3, 1), (5, 2), (6, 0)]
initial_temperature = 100
cooling_rate = 0.99
max_iterations = 1000
best_solution, best_length = simulated_annealing(cities, initial_temperature, cooling_rate, max_iterations)
print("最短路径:", best_solution)
print("路径长度:", best_length)
```
以上是一个简单的退火算法解决TSP的Python程序示例。程序首先定义了一些辅助函数,如计算城市之间的距离、计算路径长度等。然后,通过生成初始解和生成新解的方式进行迭代优化,根据一定的概率接受新解或者保留当前解。最后输出找到的最短路径和路径长度。
阅读全文