lu分解法解线性方程组matlab
时间: 2023-11-01 09:08:45 浏览: 947
LU分解法解线性方程组
LU分解法是一种常用的解线性方程组的方法。在MATLAB中,可以使用LU分解函数lu()来进行LU分解。LU分解将矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,使得A = LU。
在LU分解后,可以使用向前代入法和向后代入法来解得线性方程组的解。向前代入法用于解下三角方程组Ly = b,向后代入法用于解上三角方程组Ux = y。
具体的MATLAB代码如下所示:
```
function x = LUfenjiefa(A,b)
n = length(b);
[L,U] = lu(A); % 进行LU分解
y = zeros(n,1);
x = zeros(n,1);
% 使用向前代入法解下三角方程组Ly = b
y(1) = b(1);
for k = 2:n
y(k) = b(k) - L(k,1:k-1)*y(1:k-1);
end
% 使用向后代入法解上三角方程组Ux = y
x(n) = y(n)/U(n,n);
for k = n-1:-1:1
x(k) = (y(k) - U(k,k+1:n)*x(k+1:n))/U(k,k);
end
end
```
以上是使用LU分解法解线性方程组的MATLAB代码。你可以将系数矩阵A和常数向量b传入函数LUfenjiefa(),然后得到线性方程组的解x。
阅读全文