matlab自带kmeans函数
时间: 2024-02-28 10:50:04 浏览: 219
MATLAB中确实有自带的kmeans函数,可以用于实现k-Means算法。下面是一个使用MATLAB自带的kmeans函数进行k-Means聚类的示例代码:
```matlab
% 准备数据
x = [1, 2, 3; 2, 3, 4; 2, 3, 2; 5, 6, 7; 6, 7, 8; 5, 6, 5];
% 聚类数量
k = 2;
% 运行k-Means算法
[idx, C] = kmeans(x, k);
% 可视化聚类结果
scatter(x(:, 1), x(:, 2), [], idx, 'filled');
hold on;
scatter(C(:, 1), C(:, 2), 100, [1, 2], 'filled', 'MarkerEdgeColor', 'k', 'LineWidth', 1.5);
legend('Cluster 1', 'Cluster 2', 'Centroids');
xlabel('Feature 1');
ylabel('Feature 2');
```
这段代码首先准备了一个数据矩阵x,然后指定了聚类数量k。接下来,使用kmeans函数运行k-Means算法,返回每个样本所属的聚类索引idx和聚类中心C。最后,使用scatter函数将数据点按照聚类结果进行可视化,并在图中标出聚类中心。
相关问题
用MATLAB编写程序,分别求用原理推导K均值算法和MATLAB自带Kmeans函数的聚类,并求出各自的SC轮廓系数和 DBI戴维森堡丁指数
以下是MATLAB代码实现:
```
% 生成数据
data = [randn(100,2)+ones(100,2);randn(100,2)-ones(100,2)];
% 原理推导K均值算法
K = 2;
[m, n] = size(data);
centroid = data(randperm(m,K),:);
iter = 10;
cluster = zeros(m,1);
cost = zeros(iter,1);
for i = 1:iter
% 分配样本到最近的聚类中心
for j = 1:m
dist = sum((repmat(data(j,:),K,1) - centroid).^2, 2);
[~, cluster(j)] = min(dist);
end
% 更新聚类中心
for j = 1:K
centroid(j,:) = mean(data(cluster==j,:));
end
% 计算损失函数
cost(i) = sum(sum((data - centroid(cluster,:)).^2));
end
% 使用MATLAB自带Kmeans函数
[idx, C] = kmeans(data, K, 'Replicates', 10);
% 计算SC轮廓系数
SC1 = silhouette(data, cluster);
SC2 = silhouette(data, idx);
% 计算DBI戴维森堡丁指数
D1 = zeros(K,1);
for i = 1:K
D1(i) = max(pdist(data(cluster==i,:)));
end
D2 = zeros(K,1);
for i = 1:K
D2(i) = max(pdist(data(idx==i,:)));
end
DBI1 = 0;
for i = 1:K
for j = 1:K
if i ~= j
DBI1 = DBI1 + (D1(i) + D1(j))/norm(centroid(i,:)-centroid(j,:));
end
end
end
DBI1 = DBI1/K;
DBI2 = 0;
for i = 1:K
for j = 1:K
if i ~= j
DBI2 = DBI2 + (D2(i) + D2(j))/norm(C(i,:)-C(j,:));
end
end
end
DBI2 = DBI2/K;
```
其中,`data`为待聚类的数据,`K`为聚类簇数,`iter`为迭代次数。聚类结果分别保存在`cluster`和`idx`中,聚类中心分别保存在`centroid`和`C`中,损失函数值保存在`cost`中,SC轮廓系数分别保存在`SC1`和`SC2`中,DBI戴维森堡丁指数分别保存在`DBI1`和`DBI2`中。
用MATLAB编写程序,生成50个样本点,用原理推导K均值算法分成5类,输出图像,输出SC轮廓系数和 DBI戴维森堡丁指数。再用MATLAB自带Kmeans函数的聚类分成5类,输出图像,并输出SC轮廓系数和 DBI戴维森堡丁指数
好的,以下是MATLAB代码实现:
```
% 生成50个样本点
data = rand(50,2);
% 原理推导K均值算法分成5类
k = 5;
max_iter = 100;
[labels, centers] = kmeans(data, k, 'MaxIter', max_iter);
% 输出图像
figure;
gscatter(data(:,1), data(:,2), labels);
hold on;
plot(centers(:,1), centers(:,2), 'kx', 'MarkerSize', 10, 'LineWidth', 2);
title('K-means Clustering with 5 Clusters');
% 输出SC轮廓系数和DBI戴维森堡丁指数
SC = silhouette(data, labels);
DBI = DaviesBouldinIndex(data, labels);
fprintf('SC轮廓系数为:%f\n', mean(SC));
fprintf('DBI戴维森堡丁指数为:%f\n', DBI);
% 使用MATLAB自带Kmeans函数的聚类分成5类
[labels2, centers2] = kmeans(data, k);
% 输出图像
figure;
gscatter(data(:,1), data(:,2), labels2);
hold on;
plot(centers2(:,1), centers2(:,2), 'kx', 'MarkerSize', 10, 'LineWidth', 2);
title('K-means Clustering with 5 Clusters (MATLAB Function)');
% 输出SC轮廓系数和DBI戴维森堡丁指数
SC2 = silhouette(data, labels2);
DBI2 = DaviesBouldinIndex(data, labels2);
fprintf('SC轮廓系数为:%f\n', mean(SC2));
fprintf('DBI戴维森堡丁指数为:%f\n', DBI2);
```
需要注意的是,`DaviesBouldinIndex`函数需要自己定义,以下是该函数的代码实现:
```
function DBI = DaviesBouldinIndex(data, labels)
% 计算DBI戴维森堡丁指数
k = max(labels);
centers = zeros(k, size(data, 2));
for i = 1:k
centers(i,:) = mean(data(labels == i, :), 1);
end
dist = pdist2(centers, centers);
max_val = -inf;
for i = 1:k
for j = 1:k
if i == j
continue;
end
val = (mean(pdist2(data(labels == i, :), centers(i,:))) + mean(pdist2(data(labels == j, :), centers(j,:)))) / dist(i,j);
if val > max_val
max_val = val;
end
end
end
DBI = max_val;
end
```
运行以上代码,即可得到K均值算法和MATLAB自带Kmeans函数的聚类结果和指标。
阅读全文