请重写你的read_image函数,以便可以用语句:x_feature = feature.hog(image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False)处理image
时间: 2024-04-16 21:24:19 浏览: 90
下面是重写的 `read_image` 函数,使其能够直接返回由 `feature.hog` 生成的特征向量 `x_feature`:
```python
from PIL import Image
from skimage import feature
def read_image(image_path):
image = Image.open(image_path) # 使用PIL库打开图片文件
image = image.convert("RGB") # 将图片转换为RGB模式
image = image.resize((100, 100)) # 调整图片大小为100x100像素
x_feature = feature.hog(image, orientations=8, pixels_per_cell=(10, 10),
cells_per_block=(1, 1), visualize=False) # 提取HOG特征
return x_feature
```
在这个重写的函数中,我们不再返回原始图像数据,而是直接使用 `feature.hog` 函数提取图像的HOG特征,并将其作为特征向量 `x_feature` 返回。
请注意,这个重写的函数仅适用于你希望在 `read_image` 函数内部进行特征提取的情况。如果你希望在后续的代码中对原始图像进行其他处理或使用其他特征提取方法,你可能需要调整这个函数来适应你的需求。
相关问题
请修改这一份代码:import random from sklearn import svm from sklearn.metrics import accuracy_score from skimage.feature import hog # 将X_processed列表按3:2的比例随机划分为"员工"和"陌生人"两个集合 def split_dataset(X_processed): random.shuffle(X_processed) split_index = int(len(X_processed) * 3 / 5) employee_set = X_processed[:split_index] stranger_set = X_processed[split_index:] return employee_set, stranger_set # 使用HOG特征提取进行人脸识别训练 def train_face_recognition(employee_set): X = [] = [] for i, face_images in enumerate(employee_set): for face_image in face_images: feature = hog(face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X.append(feature) y.append(i) # i代表员工的标签 clf = svm.SVC() clf.fit(X, y) return clf # 随机抽取一张图片进行识别 def recognize_random_face(clf, X_processed): random_index = random.randint(0, len(X_processed)-1) random_face_images = X_processed[random_index] random_face_image = random.choice(random_face_images) feature = hog(random_face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) prediction = clf.predict([feature]) return prediction[0] == random_index # 示例用法 X_processed = [...] # X_processed列表的具体内容 employee_set, stranger_set = split_dataset(X_processed) clf = train_face_recognition(employee_set) result = recognize_random_face(clf, X_processed) print("识别结果:", result),增加如下功能:如果测试时认为图片不属于员工集中的任何一个员工,prediction应该等于0;“陌生人”集合也应当拥有标签,“陌生人”的标签都是0,代表非员工
以下是根据您的要求修改后的代码:
```python
import random
from sklearn import svm
from sklearn.metrics import accuracy_score
from skimage.feature import hog
# 将X_processed列表按3:2的比例随机划分为"员工"和"陌生人"两个集合
def split_dataset(X_processed):
random.shuffle(X_processed)
split_index = int(len(X_processed) * 3 / 5)
employee_set = X_processed[:split_index]
stranger_set = X_processed[split_index:]
return employee_set, stranger_set
# 使用HOG特征提取进行人脸识别训练
def train_face_recognition(employee_set, stranger_set):
X = []
y = []
for i, face_images in enumerate(employee_set):
for face_image in face_images:
feature = hog(face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False)
X.append(feature)
y.append(i) # i代表员工的标签
for face_images in stranger_set:
for face_image in face_images:
feature = hog(face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False)
X.append(feature)
y.append(0) # 陌生人的标签都设为0
clf = svm.SVC()
clf.fit(X, y)
return clf
# 随机抽取一张图片进行识别
def recognize_random_face(clf, X_processed):
random_index = random.randint(0, len(X_processed)-1)
random_face_images = X_processed[random_index]
random_face_image = random.choice(random_face_images)
feature = hog(random_face_image, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False)
prediction = clf.predict([feature])
return prediction[0] == random_index or prediction[0] == 0
# 示例用法
X_processed = [...] # X_processed列表的具体内容
employee_set, stranger_set = split_dataset(X_processed)
clf = train_face_recognition(employee_set, stranger_set)
result = recognize_random_face(clf, X_processed)
print("识别结果:", result)
```
在上述代码中,我修改了`train_face_recognition`函数,将陌生人集合的人脸图片也作为训练样本,并将标签设为0。这样,如果在识别时判断为陌生人,则预测结果为0。在`recognize_random_face`函数中,如果预测结果为0,则也判定为识别正确。
请注意,上述代码只是示例,您需要根据实际情况进行适当修改。例如,您需要将`X_processed`替换为实际的列表,其中包含50个元素,每个元素是一个含有15张人脸图片的列表。另外,您可能需要根据实际情况调整特征提取的参数。
y = np.concatenate([np.ones(len(X_processed)*len(X_processed[0])), np.zeros(len(X_masked)*len(X_masked[0]))]) print(y.shape) X_features = [] for x_list in X_processed: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) for x_list in X_masked: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) # write code to split the dataset into train-set and test-set X_train, X_test, y_train, y_test = model_selection.train_test_split(X_features, y, test_size=0.2, random_state=42, shuffle=True) # write code to train and test the SVM classifier as the facemask presence detector clf = svm.SVC() clf.fit(X_train, y_train) predicted = clf.predict(X_test) print(predicted) print(y_test) test_score = clf.score(X_test, y_test) print(test_score),请逐行解释以上代码,并指出其问题
```python
y = np.concatenate([np.ones(len(X_processed)*len(X_processed[0])), np.zeros(len(X_masked)*len(X_masked[0]))])
print(y.shape)
```
这段代码将 `X_processed` 和 `X_masked` 中的样本数量计算后,创建了一个标签数组 `y`,其中 `X_processed` 对应的标签为1,`X_masked` 对应的标签为0。
```python
X_features = []
for x_list in X_processed:
for x in x_list:
x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10),
cells_per_block=(1, 1), visualize=False)
X_features.append(x_feature)
for x_list in X_masked:
for x in x_list:
x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10),
cells_per_block=(1, 1), visualize=False)
X_features.append(x_feature)
```
这段代码使用 `skimage.feature.hog` 函数从每个图像中提取 HOG 特征,并将这些特征存储在列表 `X_features` 中。
```python
X_train, X_test, y_train, y_test = model_selection.train_test_split(X_features, y, test_size=0.2, random_state=42,
shuffle=True)
```
这段代码使用 `sklearn.model_selection.train_test_split` 函数将数据集划分为训练集和测试集,其中训练集占80%,测试集占20%。
```python
clf = svm.SVC()
clf.fit(X_train, y_train)
```
这段代码创建了一个 `SVC`(支持向量机分类器)对象 `clf`,并使用训练集 `X_train` 和标签 `y_train` 对其进行训练。
```python
predicted = clf.predict(X_test)
print(predicted)
print(y_test)
```
这段代码使用训练好的分类器 `clf` 对测试集 `X_test` 进行预测,并打印预测结果和真实标签 `y_test`。
```python
test_score = clf.score(X_test, y_test)
print(test_score)
```
这段代码计算分类器在测试集上的准确率,并打印出来。
问题:
- 代码中缺少了模块的导入语句,例如 `import numpy as np`、`import skimage.feature as ft`、`from sklearn import model_selection, svm`。
- 代码中使用了 `ft.hog()` 函数来提取 HOG 特征,但没有导入 `skimage.feature.hog` 模块。
- 在划分数据集时,应该使用相同的随机种子(random_state)来保证每次划分的结果一致。
- 如果 `X_features` 和 `y` 的维度不匹配,可能会导致训练和预测出错。需要确保提取的特征和标签数量一致。
- 缺少评估分类器性能的相关指标,例如混淆矩阵、精确率和召回率等。可以使用 `sklearn.metrics` 模块来计算这些指标。
阅读全文