不用opencv,实现clahe算法
时间: 2023-09-28 16:13:42 浏览: 131
计算机视觉OpenCV CLAHE C++源代码详细注释版
5星 · 资源好评率100%
如果你不想使用OpenCV库,你可以手动实现CLAHE算法。以下是一个基于NumPy库的简单实现示例:
```python
import numpy as np
def calculate_histogram(image):
histogram = np.zeros(256, dtype=np.uint32)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
pixel_value = image[i, j]
histogram[pixel_value] += 1
return histogram
def apply_clahe(image, clip_limit=2.0, grid_size=(8, 8)):
# 计算图像的直方图
histogram = calculate_histogram(image)
# 计算累积直方图
cdf = np.cumsum(histogram)
# 计算CLAHE增强后的图像
enhanced_image = np.zeros_like(image)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
pixel_value = image[i, j]
# 计算分块的起始和结束坐标
block_start_i = (i // grid_size[0]) * grid_size[0]
block_end_i = block_start_i + grid_size[0]
block_start_j = (j // grid_size[1]) * grid_size[1]
block_end_j = block_start_j + grid_size[1]
# 计算分块内的直方图
block_histogram = histogram[pixel_value]
block_histogram += cdf[pixel_value] - cdf[block_start_i:block_end_i, block_start_j:block_end_j].mean()
# 限制对比度增强
block_histogram = np.clip(block_histogram, 0, clip_limit)
# 将像素值映射到增强后的直方图范围
block_histogram = (block_histogram / clip_limit) * 255
# 更新增强后的像素值
enhanced_image[i, j] = block_histogram[pixel_value]
return enhanced_image
```
在上述代码中,`calculate_histogram`函数计算输入图像的直方图。`apply_clahe`函数接收输入图像、对比度限制(clip_limit)和分块大小(grid_size)作为参数,并应用CLAHE增强算法。
请注意,这只是一个简单的CLAHE实现示例,可能没有考虑到所有细节和优化。CLAHE算法涉及到图像分块、直方图计算、限制对比度增强等步骤,因此实现完整的CLAHE算法可能需要更复杂的代码。
阅读全文