torch.ones()与torch.zeros()

时间: 2024-09-19 07:16:02 浏览: 37
`torch.ones()` 和 `torch.zeros()` 是PyTorch库中用于创建张量的便捷函数,它们返回与输入参数形状相同的全为1或全为0的张量。 1. **torch.ones()**[^1]: ```python ones_tensor = torch.ones(shape) ``` 这将返回一个给定形状的全为1的张量。例如,如果你传递一个元组`(2, 3)`,它将创建一个2x3的全1矩阵: ```python ones_matrix = torch.ones((2, 3)) ``` 2. **torch.zeros()**: ```python zeros_tensor = torch.zeros(shape) ``` 同样,这将创建一个给定形状的全为0的张量。示例: ```python zeros_matrix = torch.zeros((2, 3)) ``` 这两个函数都有相应的版本如`ones_like()`和`zeros_like()`,它们接受一个现有张量作为输入,返回一个新的张量,其形状与输入张量相同,元素全为1或0。 另外,如果你想通过索引直接修改张量的特定部分,你可以使用`scatter_()`、`index_fill_()` 或 `index_put_()` 方法。这些方法允许你根据指定的索引值(或一组索引值)替换张量的一部分。
相关问题

torch.empty和torch.zeros的区别

torch.empty和torch.zeros都是用来创建张量的函数,但它们的功能略有不同。 torch.empty用于创建指定大小的未初始化张量,即张量中的元素值是随机的,可以是任何值,包括0。这个函数在需要创建一个张量但不需要初始化其值时非常有用,因为它比torch.zeros和torch.ones创建张量的速度更快。 torch.zeros则用于创建指定大小的张量,并将其中的所有元素初始化为0。这个函数在需要创建一个全零张量时非常有用。 因此,torch.empty和torch.zeros适用于不同的情况。如果你需要创建一个张量但不需要初始化其值,则使用torch.empty;如果你需要创建一个全零张量,则使用torch.zeros。

人工构造的数据集如下: import torch import matplotlib.pyplot as plt n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) 请用python从0实现logistic回归(只借助Tensor和Numpy相关的库)

要使用 Python 从零实现逻辑回归,只借助 Tensor 和 NumPy 相关的库,可以按照以下步骤进行操作: 1. 导入所需的库: ```python import numpy as np import torch ``` 2. 准备数据: ```python n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) ``` 3. 定义模型参数: ```python w = torch.randn(2, 1, requires_grad=True) # 权重参数 b = torch.zeros(1, requires_grad=True) # 偏置参数 ``` 4. 定义模型和损失函数: ```python def logistic_regression(x): return torch.sigmoid(torch.mm(x, w) + b) def cross_entropy(y_pred, y): return -torch.mean(y * torch.log(y_pred) + (1 - y) * torch.log(1 - y_pred)) ``` 5. 定义优化器和训练模型: ```python lr = 0.01 # 学习率 num_epochs = 1000 # 迭代次数 for epoch in range(num_epochs): # 前向传播 y_pred = logistic_regression(x) loss = cross_entropy(y_pred, y) # 反向传播和优化 loss.backward() # 计算梯度 with torch.no_grad(): w -= lr * w.grad # 更新权重参数 b -= lr * b.grad # 更新偏置参数 w.grad.zero_() # 清零梯度 b.grad.zero_() # 清零梯度 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 6. 使用模型进行预测: ```python with torch.no_grad(): y_pred = logistic_regression(x) predicted = (y_pred >= 0.5).float() print('Predicted:', predicted) ``` 7. 可视化结果: ```python plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=predicted.numpy().flatten(), s=100, lw=0, cmap='RdYlGn') plt.show() ``` 这样就完成了从零实现逻辑回归的过程。请注意,这里使用了 PyTorch 的自动求导功能来计算梯度,并且使用了 NumPy 进行数据可视化。
阅读全文

相关推荐

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) #y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long)), dim=0) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i] optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.unsqueeze(0)) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training')报错RuntimeError: Expected target size [1, 2], got [1]怎么修改?

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i].unsqueeze(0) labels = nn.functional.one_hot(labels, num_classes=2) optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.float()) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 报错:RuntimeError: expected scalar type Long but found Float,怎么修改?

最新推荐

recommend-type

玄武岩纤维行业研究报告 新材料技术 玄武岩纤维 性能应用 市场分析

玄武岩纤维以其优异的耐温性和化学稳定性,在建筑、消防、环保、航空航天等领域广泛应用。文件提供了玄武岩纤维的性能参数比较、特性分析、发展历程、制备工艺、应用领域,以及全球和中国市场的产量、需求量和市场规模数据。适用于新材料行业研究人员、企业决策者和市场分析师,旨在提供玄武岩纤维的技术特点、市场动态和发展趋势的参考。
recommend-type

基于 Vue 3、Vite、Ant Design Vue 4.0、TypeScript、Vben Vue Admin,最先进的技术栈,让初学者能够更快的入门并投入到团队开发中去

基于 Vue 3、Vite、Ant Design Vue 4.0、TypeScript、Vben Vue Admin,最先进的技术栈,让初学者能够更快的入门并投入到团队开发中去。包括模块如:组织机构、角色用户、菜单授权、数据权限、系统参数等。完整组件封装,数据驱动视图。为微小中大项目的开发,提供现成的开箱解决方案及丰富的示例。Vue端完全开源。无用户限制
recommend-type

请参阅 readme 了解更新的 repo 详细信息!一个示例商店,展示了如何使用 Vue、Stripe 和无服务器函数管理付款.zip

注意此 repo 不再维护,取而代之的是更新、改进的版本https ://github.com/sdras/ecommerce-netlifyVue 样品店这个小演示展示了如何使用 Vue.js 和无服务器函数接受 Stripe 付款。其实设置起来并不难!商店还展示了 Vue 中的许多概念是如何工作的。服务器端渲染和路由是用 Nuxt.js 完成的。使用 Vuex 集中管理产品详细信息的状态。值得注意的是,使用计算属性、、.syncCSS Grid 和transition-group。现场演示请访问 https://shoppity.azurewebsites.net/解释该演示的文章将很快在https://css-tricks.com/上发布无服务器功能也是开源的,可从此 repo https://github.com/sdras/sample-stripe-handler获取构建设置# install dependencies$ npm install # Or yarn# serve with hot reload at localhost:300
recommend-type

【java毕业设计】学生宿舍管理系统的设计与开发源码(springboot+vue+mysql+说明文档+LW).zip

系统可以提供信息显示和相应服务,其管理员管理宿管员,管理学生,修改密码,维护个人信息。宿管员管理公寓资产,缴费信息,公共场所清理信息,日常事务信息,审核学生床位安排信息。学生查看公共场所清理信息,日常事务,缴费信息,在线申请床位,查看床位安排。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)

Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目),个人经导师指导并认可通过的98分大作业设计项目,主要针对计算机相关专业的正在做课程设计、期末大作业的学生和需要项目实战练习的学习者。 Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目)Python期末大作业基于LSTM的天气数据时间序列预测项目源码+论文+数据集(高分项目) 个人经导师指导并认可通过的98分大作业设计项目,主要针对计算机相关专业的正在做课程设计、期末大作业的学生和需要项目实战练习的学习者。 个人经导师指导并认可通过的98分大作业设计项目,主要针对计算机相关专业的正在做课程设计、期末大
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。