yolov8n网络图
时间: 2023-08-29 08:09:57 浏览: 115
很抱歉,根据提供的引用内容,我无法确定yolov8n的网络图是什么。引用提到了yolov8的代码,但并未提及网络图。引用则提到了yolox和yolov5,与yolov8n无关。引用则提到了ONNX,但没有具体涉及yolov8n的网络图。如果您有其他相关的信息,我会尽力帮助您回答问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [yolov8s网络模型结构图](https://blog.csdn.net/zhangdaoliang1/article/details/128577291)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
yolov8n网络结构图
YOLOv8(You Only Look Once version 8)是一个先进的目标检测算法,它的网络结构基于其前身YOLO系列。YOLOv8的主要特点在于保持了实时性和高精度的平衡,并引入了一些改进,如更大的模型容量、更多的锚框(用于不同尺度物体的检测)、以及融合了多尺度输入等。
YOLOv8的网络结构主要包括以下几个部分:
1. **输入处理**:接受图像作为输入,通常会进行预处理,如归一化、resize等操作。
2. **卷积层**:包含一系列的卷积层(Convolutional Layers),用于提取特征,这些层可能会有残差连接(Residual Connections)来增加信息流动。
3. **下采样层**:通过最大池化或平均池化降低特征图的空间分辨率,同时保留关键信息。
4. **neck模块**:YOLOv8引入了EfficientNet的FPN(Feature Pyramid Network)结构,将不同层的特征融合,提供多尺度的目标检测能力。
5. **SPP Block**:空间金字塔池化层(Spatial Pyramid Pooling)进一步增强对不同尺度物体的识别。
6. **输出层**:包括三个部分:Anchor Boxes生成、分类头(Class Heads)和坐标回归头(Box Heads),用于预测每个位置可能存在的目标类别及其边界框。
7. **Loss Function**:训练过程中,使用中心点误差(Center Loss)和大小比例误差(Size Jaccard Loss)等损失函数优化整个网络。
yolov8n网络模型结构图
yolov8n网络模型结构如下所示:
1. 输入层:接收图像作为输入。
2. Darknet-53层:一个由53个卷积层和残差连接组成的主干网络,用于提取图像特征。
3. Neck层:由SPP(Spatial Pyramid Pooling)和PAN(Path Aggregation Network)模块组成,用于融合多尺度特征。
4. Detection层:包括3个不同大小的特征金字塔层,每个层都与3个不同大小的锚点框相关联,用于预测目标的边界框和类别。
5. 输出层:输出预测的目标边界框和类别。
总结起来,yolov8n网络模型结构由输入层、Darknet-53层、Neck层、Detection层和输出层组成,通过多层网络结构实现目标检测。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [YOLOV8-网络结构](https://blog.csdn.net/weixin_40723264/article/details/130745025)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [YOLOv8详解 【网络结构+代码+实操】](https://blog.csdn.net/zyw2002/article/details/128732494)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文