2023国赛数学建模c题
时间: 2023-09-18 19:06:32 浏览: 164
很抱歉,但是根据提供的引用内容,我无法找到关于2023国赛数学建模C题的具体信息。引用提到了国赛数学建模经常使用到的数学模型,题目八九不离十基本属于四种问题,并给出了相应的解法。引用解释了竞赛题目的来源和要求,参赛者需要完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文。引用提到了整数规划的概念和分类。根据这些引用内容,无法直接回答关于2023国赛数学建模C题的具体问题。建议您查询相关的官方资料或与相关专家咨询以获取更准确的信息。
相关问题
2023国赛数学建模c题Apriori算法
Apriori算法是一种常用的关联分析算法,用于发现数据集中项之间的关联关系。在2023国赛数学建模C题中,提到了Apriori算法作为解答电商的啤酒尿布问题的方法。这个问题是一个典型的关联分析问题,可以使用Apriori算法来寻找频繁项集,即经常同时出现的商品组合。
Apriori算法的基本思想是通过迭代的方式生成候选项集,并利用支持度来筛选出频繁项集。支持度表示一个项集在数据集中出现的频率。具体操作包括先扫描数据集,计算各个项的支持度,然后根据设定的最小支持度阈值,筛选出满足条件的频繁一项集。接下来,根据频繁一项集生成候选二项集,并再次计算支持度,筛选出频繁二项集。依此类推,直到无法生成更多的频繁项集为止。
在电商的啤酒尿布问题中,可以将商品作为项,利用Apriori算法找出频繁项集,即经常同时被购买的商品组合。这样可以帮助电商店主了解商品之间的关联关系,优化商品的陈列和推荐策略,提高销售额和顾客满意度。
需要注意的是,题目中提到的Apriori算法是用于解答电商的啤酒尿布问题的一种方法,而不是2023国赛数学建模C题的具体要求。在具体解答C题时,需要根据题目要求,对数据进行预处理、分析和建模,可能需要运用其他的数学模型和算法来解答问题。
2023国赛数学建模c题数据预处理
在解决2023国赛数学建模C题的数据预处理中,可以按照以下步骤进行处理。首先,根据附件2中的数据,可以按月维度统计销量情况。对于数据较少的情况,可以考虑剔除这些数据。对于存在数据缺失的情况,可以进行插值处理。此外,由于实测数据的波动较大,可以对数据进行平滑处理,以获得趋势信息。
对于第二问,可以先分别建立每个指标的预测模型,例如销量和批发价格的预测模型。可以选择适合的算法进行建模,然后利用7月1日至7日的数据生成销量和批发价格的预测结果。由于数据具有一定的周期性,需要考虑使用合适的算法来建立销量、批发价格与销售价格之间的关系模型。在构建关系模型时,可以考虑使用第一问中与其相关性较大的菜品指标。例如,如果菜品A与菜品C和菜品D的相关性超过0.95,则在建立销量、批发价格与销售价格的模型时,自变量可以包括菜品A、C、D的销量和批发价格,而因变量为菜品A的销售价格。另外,还可以考虑单独使用菜品A的指标作为自变量的情况,以及与其他菜品的相关性较差的情况。在构建模型时,需要标注好训练的模型及参数,以便第三问的调用计算。
综上所述,针对2023国赛数学建模C题的数据预处理,可以按照月维度统计销量情况,对数据进行剔除和插值处理,以及平滑处理。对于预测模型的建立,可以分别建立每个指标的模型,并考虑使用相关性较大的菜品指标进行关系模型的构建。在构建模型时,需要标注好训练的模型及参数,以便第三问的调用计算。
阅读全文