LR Range Test代码
时间: 2023-07-23 10:58:45 浏览: 264
当进行模型的训练时,我们常常需要进行学习率范围测试(LR Range Test)来选择合适的学习率。下面是一个示例的LR Range Test代码,使用PyTorch框架:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# 定义你的模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
# 定义你的数据集
class MyDataset(torch.utils.data.Dataset):
def __init__(self):
self.data = torch.randn((100, 10))
self.labels = torch.randn((100, 1))
def __getitem__(self, index):
return self.data[index], self.labels[index]
def __len__(self):
return len(self.data)
# 定义LR Range Test函数
def lr_range_test(model, train_loader, optimizer, criterion, init_value=1e-8, final_value=10.0, beta=0.98):
num_batches = len(train_loader)
lr_lambda = lambda iteration: (final_value / init_value) ** (1 / num_batches)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
model.train()
avg_loss = 0.0
best_loss = float('inf')
smooth_loss = 0.0
for batch_index, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
avg_loss = beta * avg_loss + (1 - beta) * loss.item()
smooth_loss = avg_loss / (1 - beta ** (batch_index + 1))
if smooth_loss < best_loss:
best_loss = smooth_loss
loss.backward()
optimizer.step()
lr_scheduler.step()
return best_loss
# 准备数据
dataset = MyDataset()
train_loader = DataLoader(dataset, batch_size=10, shuffle=True)
# 初始化模型、优化器和损失函数
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=1e-4)
criterion = nn.MSELoss()
# 进行LR Range Test
best_loss = lr_range_test(model, train_loader, optimizer, criterion)
print("Best loss:", best_loss)
```
请注意,这只是一个简单的示例,具体的LR Range Test实现可能因任务的不同而有所变化。你可以根据自己的需求进行相应的修改和调整。
阅读全文