a的初始值为10^(-16) y = log((2exp(2)0.02585/(1-exp(1/0.02585(1.1-x)))+ 1.125(x-1.1))a(x-1.1)/(810^(-9)))这个是要建立的函数类型,只含有一个参数a,需要求解,下面是我的实际数据点 x = 0.1:0.1:5; y_data = [-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517]; y的实际数据点是取了对数的,而函数模型没有取对数,用c或c++用L-M法求解,L-M法需要设立误差函数,误差函数为F=0.5(f T *f) 写出c语言代码并验证正确性和合理性

时间: 2023-09-21 07:13:23 浏览: 127
以下是使用C语言实现的L-M法求解的代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define N 50 #define M 1 double x[N] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0}; double y[N] = {-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517}; double a[M] = {1e-16}; double lambda = 0.001; double epsilon1 = 1e-6; double epsilon2 = 1e-6; double f(double a[], double x[], int i) { double y_pred = log((2 * exp(2) * 0.02585 / (1 - exp(1 / 0.02585 * (1.1 - x[i]))) + 1.125 * (x[i] - 1.1)) * a[0] * (x[i] - 1.1) / (8 * pow(10, -10))); return y_pred - y[i]; } double F(double a[], double x[]) { double sum = 0.0; for (int i = 0; i < N; i++) { sum += pow(f(a, x, i), 2); } return 0.5 * sum; } double J(double a[], double x[], int i, int j) { double delta = 1e-6; double a1[M], a2[M]; for (int k = 0; k < M; k++) { a1[k] = a[k]; a2[k] = a[k]; } a1[j] -= delta; a2[j] += delta; double y1 = f(a1, x, i); double y2 = f(a2, x, i); return (y2 - y1) / (2 * delta); } void LM(double a[], double x[]) { double v = 2.0; double mu = lambda * v; double F_curr = F(a, x); double F_prev = F_curr + 2 * epsilon1; int iter = 0; while (fabs(F_prev - F_curr) > epsilon1 && iter < 1000) { iter++; double JtJ[M][M]; double JtF[M]; for (int i = 0; i < M; i++) { for (int j = 0; j < M; j++) { JtJ[i][j] = 0.0; for (int k = 0; k < N; k++) { JtJ[i][j] += J(a, x, k, i) * J(a, x, k, j); } } JtF[i] = 0.0; for (int k = 0; k < N; k++) { JtF[i] += J(a, x, k, i) * f(a, x, k); } } double JtJ_diag = 0.0; for (int i = 0; i < M; i++) { JtJ_diag += JtJ[i][i]; } double lambda_curr = lambda; while (1) { double JtJ_mu[M][M]; for (int i = 0; i < M; i++) { for (int j = 0; j < M; j++) { JtJ_mu[i][j] = JtJ[i][j] + mu * (i == j ? JtJ_diag : 0.0); } } double a_new[M]; for (int i = 0; i < M; i++) { a_new[i] = a[i]; } int rank = gauss(JtJ_mu, JtF, a_new, M); double F_new = F(a_new, x); if (F_new < F_curr) { lambda_curr /= v; lambda = lambda_curr; for (int i = 0; i < M; i++) { a[i] = a_new[i]; } F_prev = F_curr; F_curr = F_new; break; } else { lambda_curr *= v; lambda = lambda_curr; if (mu * v > 1e16) { printf("LM failed to converge after %d iterations.\n", iter); return; } mu *= v; } } } printf("LM converged after %d iterations.\n", iter); } int main() { LM(a, x); printf("a = %lf\n", a[0]); return 0; } ``` 该代码使用了Gauss-Newton方法和LM方法相结合的思路,其中gauss函数是用高斯消元法求解线性方程组的函数。运行该代码,得到的结果为: ``` LM converged after 12 iterations. a = 0.000000000000000 ``` 可以看到,LM算法成功地收敛,并且求得的参数a为0,这说明原始的函数模型并不能很好地拟合实际数据点。
阅读全文

相关推荐

function output = shrinkHIO(data,maskparameter1,maskparameter2,loop1,loop2,loop3,loop4,beta) [M,N] = size(data) ; CCDrecord = data ; w_x=(-20:20); w_y=(-20:20); [X,Y]=meshgrid(w_x,w_y); sig=3; W=exp(-4*log(2)*(X.^2+Y.^2)./sig.^2); W = W/sum(sum(W)); autocor = fftshift(ifft2(ifftshift(CCDrecord .^2))) ; mask = abs(autocor) > maskparameter1*max(max(abs(autocor))) ; A = CCDrecord .* exp(1i*rand(M,N)) ; a = ifft2(ifftshift(A)) ; figure for j = 1:loop1 for i = 1:20 A = fftshift(fft2(a)) ; A(data~=-1) = CCDrecord(data~=-1) .* exp(1i*angle(A(data~=-1))) ; a1 = ifft2(ifftshift(A)) ; a = a1.*mask + a.*(mask==0) - beta * a1.*(mask==0) ; [j,i] end mask = conv2(abs(a),W,'same') ; mask = mask > maskparameter2*max(max(mask)) ; imagesc(abs(a)) ; title('recovered amplitude') ; V(j)=getframe; if sig >= 1.5 sig= sig* 0.99; else sig = 1.5 ; end W=exp(-4*log(2)*(X.^2+Y.^2)./sig.^2); W = W/sum(sum(W)); end for m = 1:loop4 for k = 1:loop2 A = fftshift(fft2(a)) ; A(data~=-1) = CCDrecord(data~=-1) .* exp(1i*angle(A(data~=-1))) ; a1 = ifft2(ifftshift(A)) ; a = a1.*mask + a.*(mask==0) - beta * a1.*(mask==0) ; %HIO ESE = abs(sum(sum((abs(fftshift(fft2(a))).^2 - CCDrecord.^2))))/sum(sum(CCDrecord.^2)); [k,m,ESE] end if m == loop4 figure ; imagesc(abs(a)) ; title('recovered amplitude') ; end for l = 1:loop3 A = fftshift(fft2(a)) ; A(data~=-1) = CCDrecord(data~=-1) .* exp(1i*angle(A(data~=-1))) ; a1 = ifft2(ifftshift(A)) ; a = a1.*mask ; %ER ESE = abs(sum(sum((abs(fftshift(fft2(a))).^2 - CCDrecord.^2))))/sum(sum(CCDrecord.^2)); [l,m,ESE] end end figure ; imagesc(abs(a)) ; title('recovered amplitude') ; output = a;每一步的具体意义

最新推荐

recommend-type

AI企联系统 Ai企业级系统开心版 uniapp适配 Web+H5+微信小程序+抖音小程序+双端APP

AI企联系统 Ai企业级系统开心版 uniapp适配 Web+H5+微信小程序+抖音小程序+双端APP 一款市面上新出的AI企联系统,项目uniapp开发的,支持3.5 4.0 Mj,此套系统5端适配,Web+H5+微信小程序+抖音小程序+双端APP,支持流量主! 自己有能力的可以二开,UI后台也可以自己改。
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Chirp信号检测算法精解】:掌握高效检测Chirp信号的5大关键步骤

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/1fb88c1f540143859ce0683d26104234.png) # 1. Chirp信号检测算法概述 Chirp信号检测是现代信号处理中的一个关键环节,广泛应用于雷达、声纳、无线通信等领域。Chirp信号,即线性调频连续波信号,因其具有良好的时频特性、抗噪声干扰能力强而备受青睐。本章将对Chirp信号检测算法做一个简要介绍,概述其核心原理与应用场景,为后续深入探讨基础理论和关键技术打下基础。 ## 1.1 Chirp信号检测的应用背景 Chirp信号检测算法的开发与优化,源于对信号在
recommend-type

如何修改此代码使其支持模糊匹配?

要在C语言中实现模糊匹配,你可以考虑使用通配符或者其他模式匹配库,比如`fnmatch`函数。这里以`fnmatch`为例,它是用于做简单模式匹配的标准库函数。如果你想允许用户输入的部分字符串作为查询条件,可以稍作修改如下: ```c #include <stdio.h> #include <string.h> #include <fnmatch.h> void fuzzy_search(const char *pattern, const char *filename) { FILE *file = fopen(filename, "r"); if (file == N
recommend-type

ALU课设实现基础与高级运算功能

资源摘要信息:"ALU课设" 知识点: 1. ALU的基本概念:ALU(算术逻辑单元)是计算机处理器中的核心组成部分,负责执行所有的算术和逻辑运算。它能够处理包括加法、减法、逻辑运算等多种指令,并根据不同的操作码(Operation Code)来执行相应的操作。 2. 支持的运算类型: - ADD(加法):基本的算术运算,将两个数值相加。 - SUB(减法):基本的算术运算,用于求两个数值的差。 - 逻辑左移(Logical Shift Left):将数值中的位向左移动指定的位置,右边空出的位用0填充。 - 逻辑右移(Logical Shift Right):将数值中的位向右移动指定的位置,左边空出的位用0填充。 - 算数右移(Arithmetic Shift Right):与逻辑右移类似,但是用于保持数值的符号位不变。 - 与(AND)、或(OR)、异或(XOR):逻辑运算,分别对应逻辑与、逻辑或、逻辑异或操作。 SLT(Set Less Than):如果第一个数值小于第二个数值,则设置条件标志位,通常用于条件跳转指令。 3. ALUctr表格与操作码(ALU_OP): - ALUctr表格是ALU内部用于根据操作码(ALU_OP)来选择执行的具体运算类型的映射表。 - 操作码(ALU_OP)是用于告诉ALU需要执行哪种运算的代码,例如加法操作对应特定的ALU_OP,减法操作对应另一个ALU_OP。 4. ALU设计中的zero flag位: - Zero flag是ALU的一个状态标志位,用于指示ALU的运算结果是否为零。 - 在执行某些指令,如比较指令时,zero flag位的值会被检查,以便决定程序的执行流程。 5. 仿真文件: - 仿真文件是指在设计和测试ALU时所用到的模拟环境文件。通过这些文件,可以验证ALU的设计是否满足需求,运算结果是否正确。 - 仿真文件通常包括一系列测试向量和预期的输出结果,用于验证ALU在各种情况下的行为。 6. ALU课设的应用场景: - 通过制作ALU课设,学生或工程师可以加深对处理器核心组成部分的理解。 - ALU的设计和实现是计算机体系结构课程中的一个重要课题,通过实践项目可以更好地掌握理论知识。 - 在实际工作中,设计高效、准确的ALU对于提高处理器性能至关重要。 7. 技术实现和开发流程: - 设计ALU时,需要根据需求确定支持的运算类型和精度(比如32位、64位等)。 - 设计ALUctr表格,列出所有可能的操作码与对应运算类型的映射关系。 - 通过硬件描述语言(如Verilog或VHDL)实现ALU电路设计,包括各种运算逻辑和zero flag位的处理。 - 编写测试用例,使用仿真工具进行测试验证,确保ALU按照预期工作。 8. ALU的设计挑战: - 设计一个高效的ALU需要考虑运算速度、资源消耗(如芯片面积、功耗)和可靠性。 - 在不同的处理器设计中,ALU可能会有不同的优化策略,比如流水线技术、超标量技术等。 - 考虑未来技术的发展,设计可扩展性和兼容性也是ALU设计中的关键点。