class BasicBlock(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() # 1. BasicBlock模块中的共有2个卷积;BasicBlock模块中的第1个卷积层; self.conv1 = regularized_padded_conv(out_channels, kernel_size=3, strides=stride) self.bn1 = layers.BatchNormalization() # 2. 第2个;第1个卷积如果做stride就会有一个下采样,在这个里面就不做下采样了。这一块始终保持size一致,把stride固定为1 self.conv2 = regularized_padded_conv(out_channels, kernel_size=3, strides=1) self.bn2 = layers.BatchNormalization() # 3. 判断stride是否等于1,如果为1就是没有降采样。 if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = Sequential([regularized_padded_conv(self.expansion * out_channels, kernel_size=1, strides=stride), layers.BatchNormalization()]) else: self.shortcut = lambda x, _: x self.max= layers.GlobalMaxPooling2D(kernel_size=2, stride=2) def call(self, inputs, training=False): out = self.conv1(inputs) out = self.bn1(out, training=training) out = tf.nn.relu(out) out = self.conv2(out) out = self.bn2(out, training=training) out = out + self.shortcut(inputs, training) out = self.max(out) out = tf.nn.relu(out) return out 上述报错如何修改
时间: 2024-02-14 13:35:25 浏览: 58
这个报错是因为模型中的某一层的权重形状与提供的权重形状不匹配。你可以通过查看模型中的每一层的权重形状,并检查提供的权重形状是否与它们匹配来定位问题。
根据你提供的代码,可能是 `self.shortcut` 层的权重形状不匹配。你可以通过在 `self.shortcut` 中添加打印语句或使用调试器来查看该层的权重形状。如果发现权重形状不匹配,可以尝试更改模型的权重文件或更改该层的权重形状。
另外,你可以尝试重新训练模型,看看是否可以解决问题。如果你无法解决问题,请提供更多的上下文和代码,以便我可以更好地理解你的问题并给出更具体的建议。
相关问题
class BasicBlock1(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() g\对不对
这段代码有一个问题:在 `super()` 函数中应该使用当前类的名称 `BasicBlock1` 而不是 `BasicBlock`,因为这个类的名称是 `BasicBlock1`。正确的代码应该如下所示:
```
class BasicBlock1(layers.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock1, self).__init__()
# rest of the code
```
这样,`super()` 函数将会调用 `BasicBlock1` 的父类的构造函数,而不是 `BasicBlock` 的。
class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层
为了用稀疏表示替换全连接层,需要先将特征图展平,然后使用稀疏矩阵与其进行乘法运算。
以下是修改后的代码:
```
import torch.sparse as sparse
class ResNet18_2D(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18_2D, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1)
self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2)
self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2)
self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 替换全连接层
self.fc = nn.Identity()
def _make_layer(self, block, out_channels, num_blocks, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
# 使用稀疏矩阵与展平后的特征图进行乘法运算
out = sparse.mm(out, nn.Parameter(torch.randn(out.size(1), 512)))
return out
```
阅读全文