for h in range(a2015): g=e[h].sum() if g >=10: y_label.append(1) else: y_label.append(0)是什么意思
时间: 2024-04-01 07:34:21 浏览: 35
这段代码是一个Python的循环语句,其中a2015是一个变量,循环的次数为a2015的值。在每次循环中,代码会计算e[h]的元素之和,并将结果赋值给变量g。接着,如果g的值大于等于10,则向列表y_label中添加数字1,否则添加数字0。这段代码的作用是将e列表中的多个子列表的元素求和,然后根据求和结果是否大于等于10,将0或1添加到y_label列表中。
相关问题
class SampleDataset(torch.utils.data.Dataset): def __init__(self): self.sequences = [] self.labels = [] for _ in range(1000): seq = torch.randn(10, 5) label = torch.zeros(2) if seq.sum() > 0: label[0] = 1 else: label[1] = 1 self.sequences.append(seq) self.labels.append(label) def __len__(self): return len(self.sequences) def __getitem__(self, idx): return self.sequences[idx], self.labels[idx]
这段代码定义了一个名为`SampleDataset`的自定义数据集类,用于生成样本数据。数据集包含了1000个序列样本,每个序列包含10个维度为5的随机数。同时,每个序列对应一个标签,标签是一个维度为2的张量。
`__init__`方法初始化了数据集的`sequences`和`labels`列表。通过循环生成1000个序列样本,并根据序列元素的和来确定标签。如果序列元素的和大于0,则标签的第一个维度为1,否则第二个维度为1。然后将序列和标签添加到对应的列表中。
`__len__`方法返回数据集的样本数量。
`__getitem__`方法根据索引值`idx`返回对应的序列和标签。
这个自定义数据集类可以用于构建PyTorch的数据加载器,并在训练模型时使用。
x_train, t_train, x_test, t_test = load_data('F:\\2023\\archive\\train') network = DeepConvNet() network.load_params("deep_convnet_params.pkl") print("calculating test accuracy ... ") sampled = 1000 x_test = x_test[:sampled] t_test = t_test[:sampled] prediect_result = [] for i in x_test: i = np.expand_dims(i, 0) y = network.predict(i) _result = network.predict(i) _result = softmax(_result) result = np.argmax(_result) prediect_result.append(int(result)) acc_number = 0 err_number = 0 for i in range(len(prediect_result)): if prediect_result[i] == t_test[i]: acc_number += 1 else: err_number += 1 print("预测正确数:", acc_number) print("预测错误数:", err_number) print("预测总数:", x_test.shape[0]) print("预测正确率:", acc_number / x_test.shape[0]) classified_ids = [] acc = 0.0 batch_size = 100 for i in range(int(x_test.shape[0] / batch_size)): tx = x_test[i * batch_size:(i + 1) * batch_size] tt = t_test[i * batch_size:(i + 1) * batch_size] y = network.predict(tx, train_flg=False) y = np.argmax(y, axis=1) classified_ids.append(y) acc += np.sum(y == tt) acc = acc / x_test.shape[0] classified_ids = np.array(classified_ids) classified_ids = classified_ids.flatten() max_view = 20 current_view = 1 fig = plt.figure() fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.2, wspace=0.2) mis_pairs = {} for i, val in enumerate(classified_ids == t_test): if not val: ax = fig.add_subplot(4, 5, current_view, xticks=[], yticks=[]) ax.imshow(x_test[i].reshape(28, 28), cmap=plt.cm.gray_r, interpolation='nearest') mis_pairs[current_view] = (t_test[i], classified_ids[i]) current_view += 1 if current_view > max_view: break print("======= 错误预测结果展示 =======") print("{view index: (label, inference), ...}") print(mis_pairs) plt.show()
这段代码是一个深度卷积神经网络用于对手写数字图像进行分类的代码。首先,通过load_data函数加载训练数据和测试数据集,然后使用DeepConvNet()创建了一个深度卷积神经网络,并通过load_params函数加载了预训练的参数。接着,从测试集中选取了1000个样本进行测试,并用predict函数对每个样本进行预测,将预测结果存储在predict_result列表中。然后,计算预测的正确率,并将错误预测结果展示出来。最后,调用show函数展示错误预测结果。
阅读全文