你能不能帮我补全代码基于基尼值进行划分选择构建决策树
时间: 2023-08-31 18:32:18 浏览: 63
当然可以,以下是基于基尼值进行划分选择构建决策树的Python代码:
```python
import numpy as np
from collections import Counter
class Node:
def __init__(self, feature_index=None, threshold=None, left=None, right=None, value=None):
self.feature_index = feature_index # 用于划分数据集的特征索引
self.threshold = threshold # 特征阈值
self.left = left # 左子树
self.right = right # 右子树
self.value = value # 叶节点的预测值
class DecisionTree:
def __init__(self, max_depth=None, min_samples_split=2, min_impurity_decrease=0):
self.max_depth = max_depth # 决策树最大深度
self.min_samples_split = min_samples_split # 决策树节点分裂最小样本数
self.min_impurity_decrease = min_impurity_decrease # 节点分裂最小不纯度减少量
self.root = None # 决策树根节点
def fit(self, X, y):
self.root = self._build_tree(X, y)
def _build_tree(self, X, y, depth=0):
n_samples, n_features = X.shape
n_labels = len(np.unique(y))
# 停止条件
if depth == self.max_depth or n_samples < self.min_samples_split or n_labels == 1:
leaf_value = self._leaf_value(y)
return Node(value=leaf_value)
# 选择最优划分特征和阈值
best_feature_index, best_threshold = self._best_split(X, y, n_samples, n_features)
# 计算当前节点的基尼指数
impurity = self._gini(y)
# 计算分裂后的不纯度
X_left, X_right, y_left, y_right = self._split(X, y, best_feature_index, best_threshold)
n_left, n_right = len(y_left), len(y_right)
impurity_left, impurity_right = self._gini(y_left), self._gini(y_right)
impurity_decrease = impurity - (n_left / n_samples) * impurity_left - (n_right / n_samples) * impurity_right
# 停止条件
if impurity_decrease < self.min_impurity_decrease:
leaf_value = self._leaf_value(y)
return Node(value=leaf_value)
# 递归构建左右子树
left = self._build_tree(X_left, y_left, depth + 1)
right = self._build_tree(X_right, y_right, depth + 1)
return Node(feature_index=best_feature_index, threshold=best_threshold, left=left, right=right)
def predict(self, X):
return [self._traverse_tree(x, self.root) for x in X]
def _traverse_tree(self, x, node):
if node.value is not None:
return node.value
if x[node.feature_index] <= node.threshold:
return self._traverse_tree(x, node.left)
else:
return self._traverse_tree(x, node.right)
def _best_split(self, X, y, n_samples, n_features):
best_feature_index, best_threshold = None, None
best_impurity = float('inf')
for feature_index in range(n_features):
thresholds = np.unique(X[:, feature_index])
for threshold in thresholds:
X_left, X_right, y_left, y_right = self._split(X, y, feature_index, threshold)
n_left, n_right = len(y_left), len(y_right)
if n_left == 0 or n_right == 0:
continue
impurity = (n_left / n_samples) * self._gini(y_left) + (n_right / n_samples) * self._gini(y_right)
if impurity < best_impurity:
best_feature_index, best_threshold = feature_index, threshold
best_impurity = impurity
return best_feature_index, best_threshold
def _split(self, X, y, feature_index, threshold):
left = (X[:, feature_index] <= threshold)
right = (X[:, feature_index] > threshold)
return X[left], X[right], y[left], y[right]
def _gini(self, y):
counter = Counter(y)
n_samples = len(y)
impurity = 1 - sum([(counter[c] / n_samples) ** 2 for c in counter])
return impurity
def _leaf_value(self, y):
counter = Counter(y)
most_common = counter.most_common(1)[0][0]
return most_common
```
这是一个简单的实现,你可以根据自己的需求进行修改和完善。
阅读全文