// #[inline(never)] /// extracts four values: the column, the row, the time-over-threshold, and the /// time-of-arrival from a "hit" packet; unsafe due to being extremely "hot" code for reading /// shift rights after multiplication are in place of division; 25_000 is 25 * 1000; 409600000 /// is 16384 * 1000 * 25
时间: 2024-01-01 09:03:31 浏览: 114
这段代码是一个被注释掉的函数,并包含一些注释说明。根据注释的描述,这段代码用于从一个 "hit" 数据包中提取出四值:列号(column)、行号(row)、时间超过阈值(time-over-threshold)和到达时间(time-of-arrival)。
根据注释的说明,由于这段代码是非常高频率的代码用于读取数据,因此被标记为 `extremely "hot" code`。此外,代码中使用了位移操作来替代除法运算,以提高性能。
具体的数值常量说明如下:
- `25_000` 表示 25 乘以 1000。
- `409600000` 表示 16384 乘以 1000 乘以 25。
然而,由于该函数被注释掉了,并且没有给出具体的代码实现,无法提供更详细的解释和功能描述。如果需要进一步了解该函数的功能和实现,请查看相关的代码实现或者取消注释以便进行调用和使用。
相关问题
出一道跟以下题目类似的题Write a function named max_row to find the row for where the value of a given column is maximum. It takes two arguments, a Pandas dataframe and the name of the column. It should return the row that contains the maximum value of the column.
Sure, here's a similar problem:
Write a function named "min_column" to find the column where the value of a given row is minimum. It takes two arguments, a Pandas dataframe and the index of the row. It should return the column that contains the minimum value of the row.
Here's a possible solution:
```python
import pandas as pd
def min_column(df, row_index):
# Get the row with the given index
row = df.iloc[row_index]
# Find the column with the minimum value in the row
min_col = row.idxmin()
return min_col
```
This function first extracts the row with the given index from the dataframe using the `iloc` method. It then uses the `idxmin` method to find the name of the column with the minimum value in the row. Finally, it returns the name of the column. You can use this function to find the column with the minimum value for a particular row in a Pandas dataframe.
In the code cell below, complete function extract163Data which takes a soup as a parameter and return a list whith the following data: {'title': '贾跃亭的成功意味着实体失败?', 'time': '2016-04-25 14:28:18', 'url': 'http://money.163.com/16/0425/14/BLGM1PH5002551G6.html'}, {'title': '海尔模式为何在西方叫好不叫座', 'time': '2016-04-22 15:00:23', 'url': 'http://money.163.com/16/0422/15/BL90MCB400253G87.html'}, {'title': '有前科就不能开网约车?', 'time': '2016-04-12 15:30:49', 'url': 'http://money.163.com/16/0412/15/BKFAETGB002552IJ.html'}.
Here is the implementation of the function:
```python
def extract163Data(soup):
data_list = []
news_list = soup.find('div', class_='mod_newslist').find_all('li')
for news in news_list:
title = news.find('a').get_text().strip()
time = news.find('span', class_='time').get_text().strip()
url = news.find('a')['href']
data = {'title': title, 'time': time, 'url': url}
data_list.append(data)
return data_list
```
This function first finds the `div` element with class `mod_newslist` using `soup.find`, and then gets all the `li` elements within it using `find_all`. For each `li` element, it extracts the `title`, `time`, and `url` using `find` and `get_text` methods, and then creates a dictionary with these values. Finally, it appends the dictionary to a list and returns the list.
阅读全文