torch.arange(200).long().unsqueeze(0).expand(4, -1)的输出是什么

时间: 2024-05-20 21:12:53 浏览: 13
这段代码的输出是一个张量,形状为 (4, 200)。具体来说,这个张量是通过以下步骤得到的: 1. torch.arange(200) 生成一个形状为 (200,) 的一维张量,包含了从 0 到 199 的整数。 2. .long() 把这个一维张量的数据类型转换为整型。 3. .unsqueeze(0) 在第 0 维插入一个维度,把这个一维张量变成形状为 (1, 200) 的二维张量。 4. .expand(4, -1) 把这个二维张量沿着第 0 维复制 4 次,沿着第 1 维不变,得到形状为 (4, 200) 的张量。 最后得到的张量的每一行都是从 0 到 199 的整数序列,共有 4 行。
相关问题

self.wte(torch.arange(200).long().unsqueeze(0).expand(4, -1))的输出是什么?

假设模型的词表大小为200,这行代码的作用是生成一个4行200列的张量,其中每一行都是0到199的整数序列。具体来说,这行代码首先生成一个200维的长整型向量,其中每个元素的值对应模型词表中的一个单词。然后使用`unsqueeze(0)`将这个向量在第0个维度上扩展,即将其形状从(200,)变为(1, 200)。接着使用`expand(4, -1)`将这个张量在第0个维度上复制4遍,即将其形状从(1, 200)变为(4, 200)。输出结果是一个形状为(4, 200)的张量,表示4个长度为200的整数序列。

class sampler (Sampler): def u (self, train size, batch_ size): num_ data = train_ size self .num_ per batch = int(num_ data 1 batch_ size) self .batch size = batch_ size self .range = torch.arange(0, batch_ size) .view(1, batch_ size).long() self.leftover flag = False if num_ data % batch_ size: self.leftover = torch.arange(self .num_ per batch * batch_ size, num_ data) . long( )self.leftover flag = True def_ iter_a (self): rand_ num = torch.randperm(self .num_ per_ batch) .view(-1, 1) * self .batch size self .rand_ num = rand_ num. expand(self .num_ per_ batch, self .batch_size) + self .range self .rand num_view = self .rand_ num. view(-1) if self.leftover_ flag: self .rand_ num_ view = torch.cat((self.rand_ num_ view, self.leftover), 0 return iter(self .rand_ num_ view) def Len_ (self): return num_ data 分析上述代码中的错误

代码中的错误在于使用了错误的语法和变量命名。以下是需要修正的错误: 1. 函数 `u()` 的定义中,应该将 `train size` 改为 `train_size`。同样的,`batch_ size` 改为 `batch_size`。 2. 在 `u()` 函数中,`int(num_ data 1 batch_ size)` 的语法是错误的,应该改为 `int(num_data / batch_size)`。 3. 在 `u()` 函数中,`self.leftover flag` 的语法也是错误的,应该改为 `self.leftover_flag`。 4. 在 `u()` 函数中,`long( )self.leftover flag = True` 的语法是错误的,应该将其分成两行,并且添加缺少的冒号。 5. 在 `def_ iter_a()` 函数中,`rand_ num = torch.randperm(self .num_ per_ batch) .view(-1, 1) * self .batch size` 的语法是错误的,应该将 `self .batch size` 改为 `self.batch_size`。 6. 在 `def_ iter_a()` 函数中,`self .rand num_view = self .rand_ num. view(-1)` 的语法是错误的,应该将 `self .rand num_view = self .rand_ num. view(-1)` 改为 `self.rand_num_view = self.rand_num.view(-1)`。 7. 在 `def_ iter_a()` 函数中,`if self.leftover_ flag:` 的语法是错误的,应该将其改为 `if self.leftover_flag:`。 8. 在 `def_ iter_a()` 函数中,`self .rand_ num_ view = torch.cat((self.rand_ num_ view, self.leftover), 0` 的语法是错误的,应该将其改为 `self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0)`。 9. 在 `def Len_()` 函数中,`return num_ data` 的语法是错误的,应该将其改为 `return num_data`。 修正以上错误后的代码如下: ```python class Sampler: def u(self, train_size, batch_size): num_data = train_size self.num_per_batch = int(num_data / batch_size) self.batch_size = batch_size self.range = torch.arange(0, batch_size).view(1, batch_size).long() self.leftover_flag = False if num_data % batch_size: self.leftover = torch.arange(self.num_per_batch * batch_size, num_data).long() self.leftover_flag = True def iter_a(self): rand_num = torch.randperm(self.num_per_batch).view(-1, 1) * self.batch_size self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range self.rand_num_view = self.rand_num.view(-1) if self.leftover_flag: self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0) return iter(self.rand_num_view) def Len(self): return num_data ``` 以上是修正后的代码。修正后代码中的变量命名和语法都是正确的。

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import skimage.segmentation as seg import numpy as np # 超参数 from PIL import Image num_superpixels = 1000 compactness = 10 sigma = 1 # 定义模型 class SuperpixelSegmentation(nn.Module): def init(self): super(SuperpixelSegmentation, self).init() self.convs = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, num_superpixels, kernel_size=1, stride=1) ) def forward(self, x): x = self.convs(x) return x # 加载图像 imgA = Image.open('1.png').convert('RGB') imgB = Image.open('2.jpg').convert('RGB') # 超像素分割 imgA_np = np.array(imgA) segments = seg.slic(imgA_np, n_segments=num_superpixels, compactness=compactness, sigma=sigma) segments = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0).float() segments = F.interpolate(segments, size=(imgA.height, imgA.width), mode='nearest').long() # 应用超像素块范围到图像B imgB_np = np.array(imgB) for i in range(num_superpixels): mask = (segments == i) imgB_np[mask.expand(3, -1, -1)] = np.mean(imgB_np[mask.expand(3, -1, -1)], axis=1, keepdims=True) # 显示超像素分割图像 imgA_segments = np.zeros_like(imgA_np) for i in range(num_superpixels): mask = (segments == i) imgA_segments[mask.expand(3, -1, -1)] = np.random.randint(0, 255, size=(3,)) imgA_segments = Image.fromarray(imgA_segments.astype(np.uint8)) imgB_segments = Image.fromarray(imgB_np) # 显示图像 transforms.ToPILImage()(imgA).show() transforms.ToPILImage()(imgB).show() imgA_segments.show() imgB_segments.show()上述代码出现错误:RuntimeError: expand(CPUBoolType{[1, 1, 512, 512]}, size=[3, -1, -1]): the number of sizes provided (3) must be greater or equal to the number of dimensions in the tensor (4)

最新推荐

recommend-type

关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)

torch.optim的灵活使用详解 1. 基本用法: 要构建一个优化器Optimizer,必须给它一个包含参数的迭代器来优化,然后,我们可以指定特定的优化选项, 例如学习速率,重量衰减值等。 注:如果要把model放在GPU中,需要...
recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

Pytorch中torch.gather函数

在学习 CS231n中的NetworkVisualization-PyTorch任务,讲解了使用torch.gather函数,gather函数是用来根据你输入的位置索引 index,来对张量位置的数据进行合并,然后再输出。 其中 gather有两种使用方式,一种为 ...
recommend-type

Pytorch中torch.nn的损失函数

一、torch.nn.BCELoss(weight=None, size_average=True) 二、nn.BCEWithLogitsLoss(weight=None, size_average=True) 三、torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=True) 四、总结 前言 最近...
recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。