MATLAB的变色龙算法代码
时间: 2023-10-04 07:05:02 浏览: 161
以下是MATLAB中的变色龙算法代码:
```
function [bestSolution, bestFitness] = chameleon_algorithm(fitnessFunction, populationSize, numberOfIterations, lowerBounds, upperBounds)
% 确定初始变色龙位置
population = rand(populationSize, numel(lowerBounds)) .* (upperBounds - lowerBounds) + lowerBounds;
% 计算初始适应度
fitness = fitnessFunction(population);
% 找到最好的解决方案和适应度
[bestFitness, bestIndex] = min(fitness);
bestSolution = population(bestIndex, :);
% 开始迭代
for i = 1:numberOfIterations
% 计算每个变色龙的适应度和斑点大小
for j = 1:populationSize
% 计算变色龙的适应度
currentFitness = fitnessFunction(population(j, :));
% 如果当前适应度比最佳适应度好,更新最佳适应度和解决方案
if currentFitness < bestFitness
bestFitness = currentFitness;
bestSolution = population(j, :);
end
% 计算变色龙的斑点大小
spotSize = 1 / (1 + exp(-10 * (currentFitness - bestFitness) / bestFitness));
% 更新变色龙的位置和斑点
for k = 1:numel(lowerBounds)
% 计算斑点的方向和大小
direction = randn(1);
spot = spotSize * direction;
% 将斑点添加到变色龙的位置
population(j, k) = population(j, k) + spot;
% 保持变色龙在边界内
if population(j, k) < lowerBounds(k)
population(j, k) = lowerBounds(k);
elseif population(j, k) > upperBounds(k)
population(j, k) = upperBounds(k);
end
end
end
end
end
```
其中,`fitnessFunction`是一个函数句柄,输入为一个变色龙位置,输出为该位置的适应度值;`populationSize`是变色龙种群数量;`numberOfIterations`是迭代次数;`lowerBounds`和`upperBounds`分别是变色龙位置的上下界。函数的输出是最优解和最优适应度。
阅读全文