// Take first frame and find corners in it capture.Read(old_frame); Cv2.CvtColor(old_frame, old_gray, ColorConversionCodes.BGR2GRAY); Point2f[] p0 = Cv2.GoodFeaturesToTrack(old_gray, 100, 0.3, 7, null, 7, false, 0.04); Point2f[] p1 = new Point2f[p0.Length];
时间: 2024-04-27 22:21:07 浏览: 159
这段代码是用于对视频的第一帧图像进行处理,包括将其转换为灰度图像、使用GoodFeaturesToTrack()方法找到图像中的角点,并且初始化一个p1数组。其中,capture是用于读取视频帧的对象,Read()方法用于读取视频的一帧图像。Cv2.CvtColor()方法用于将BGR格式的图像转换为灰度图像,ColorConversionCodes.BGR2GRAY表示转换为灰度图像的代码。GoodFeaturesToTrack()方法用于检测图像中的角点,其中100表示最多检测100个角点,0.3表示角点检测的质量水平,7表示角点之间的最小距离,null表示不使用掩码,7表示使用7x7的Sobel算子计算图像的导数,false表示不使用Harris角点检测方法,0.04表示角点检测参数。p0和p1是两个用于存储角点的Point2f数组。
相关问题
改进下面代码使其输出特征点连线图和拼接图import cv2 # 读取图片 img1 = cv2.imread("qiao1.jpg") img2 = cv2.imread("qiao2.jpg") # 转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # Shi-Tomasi角点检测 corners1 = cv2.goodFeaturesToTrack(gray1, 25, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(gray2, 25, 0.01, 10) # 计算光流 lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, corners1, None, **lk_params) # 筛选匹配点 good_new = p1[st == 1] good_old = corners1[st == 1] # 计算变换矩阵 M, _ = cv2.findHomography(good_new, good_old, cv2.RANSAC) # 进行透视变换 result = cv2.warpPerspective(img2, M, (img1.shape[1] + img2.shape[1], img2.shape[0])) result[0:img1.shape[0], 0:img1.shape[1]] = img1 # 保存拼接结果 cv2.imwrite("result.jpg", result)
可以改进代码如下:
```python
import cv2
# 读取图片
img1 = cv2.imread("qiao1.jpg")
img2 = cv2.imread("qiao2.jpg")
# 转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# Shi-Tomasi角点检测
corners1 = cv2.goodFeaturesToTrack(gray1, 25, 0.01, 10)
corners2 = cv2.goodFeaturesToTrack(gray2, 25, 0.01, 10)
# 计算光流
lk_params = dict(winSize=(15, 15), maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, corners1, None, **lk_params)
# 筛选匹配点
good_new = p1[st == 1]
good_old = corners1[st == 1]
# 计算变换矩阵
M, _ = cv2.findHomography(good_new, good_old, cv2.RANSAC)
# 进行透视变换
result = cv2.warpPerspective(img2, M, (img1.shape[1] + img2.shape[1], img2.shape[0]))
result[0:img1.shape[0], 0:img1.shape[1]] = img1
# 画出特征点连线图
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
cv2.line(result, (a, b), (c, d), (0, 0, 255), 2)
# 拼接图
cv2.imwrite("result.jpg", result)
```
在原有的代码基础上,我们新增了以下代码:
1. 画出特征点连线图
```python
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
cv2.line(result, (a, b), (c, d), (0, 0, 255), 2)
```
这段代码使用 `cv2.line()` 函数画出了特征点的连线,并将其绘制在拼接图上。其中,`good_new` 和 `good_old` 分别是筛选出的匹配点的新旧坐标,`ravel()` 函数用于将其展平为一维数组,然后使用 `cv2.line()` 函数连接两个点。
2. 输出拼接图
```python
cv2.imwrite("result.jpg", result)
```
这段代码使用 `cv2.imwrite()` 函数输出拼接图。
import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.
这个错误的原因可能是因为 `img_a` 的类型不是浮点类型,需要将其转换为浮点类型后再进行超像素分割。可以使用 `img_as_float` 函数将其转换为浮点类型,代码如下:
```
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from skimage.segmentation import slic
import matplotlib.pyplot as plt
from skimage.segmentation import mark_boundaries
from skimage import img_as_float
# 定义超像素数量
num_segments = 100
# 加载图像 A 和 B
img_a = cv2.imread('img_a.jpg')
img_b = cv2.imread('img_b.jpg')
# 将图像 A 转换为浮点类型
img_a = img_as_float(img_a)
# 对图像 A 进行超像素分割,并获取每个超像素块的像素范围
segments_a = slic(img_a, n_segments=num_segments, sigma=5)
pixel_ranges = []
for i in range(num_segments):
mask = (segments_a == i)
indices = np.where(mask)[1]
pixel_range = (np.min(indices), np.max(indices))
pixel_ranges.append(pixel_range)
# 将像素范围应用到图像 B 上实现超像素分割
segments_b = np.zeros_like(segments_a)
for i in range(num_segments):
pixel_range = pixel_ranges[i]
segment_b = img_b[:, pixel_range[0]:pixel_range[1], :]
segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float()
segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True)
segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8)
gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
segments_b[np.where(mask)] = i
# 可视化超像素分割结果
fig = plt.figure('Superpixels')
ax = fig.add_subplot(1, 2, 1)
ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a))
ax = fig.add_subplot(1, 2, 2)
ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b))
plt.axis("off")
plt.show()
```
阅读全文