详细解释每条代码意思int inverse(int a, int n) { int t = 0, newt = 1; int r = n, newr = a; int q, temp; while (newr != 0) { q = r / newr; temp = t; t = newt; newt = temp - q * newt; temp = r; r = newr; newr = temp - q * newr; } if (r > 1) return -1; if (t < 0) t += n; return t;
时间: 2024-01-19 20:04:55 浏览: 153
这段代码是一个求模数n下a的逆元的函数,函数名为inverse,参数为a和n,返回值为a在模n下的逆元t。
整体思路是使用扩展欧几里得算法求解,具体实现如下:
1. 声明四个变量t、newt、r、newr,分别初始化为0、1、n、a。
2. 进入while循环,当newr不等于0时,执行以下操作:
a. 计算商q=r/newr。
b. 交换t和newt的值,即temp=t,t=newt,newt=temp-q*newt。
c. 交换r和newr的值,即temp=r,r=newr,newr=temp-q*newr。
3. 退出while循环后,判断r的值是否大于1,若是则说明a和n不互质,不存在逆元,直接返回-1。
4. 判断t的值是否小于0,若是,则需要将其加上n,才是正确的逆元。
5. 返回t。
整个函数的作用就是求解模n下a的逆元,如果不存在逆元则返回-1。
相关问题
C++实现ELGAMAL签名部分代码
ElGamal数字签名算法的C++实现如下:
```cpp
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
const int MAXN = 1005;
const int p = 23, g = 5;
// 求模数n下a的逆元
int inverse(int a, int n) {
int t = 0, newt = 1;
int r = n, newr = a;
int q, temp;
while (newr != 0) {
q = r / newr;
temp = t;
t = newt;
newt = temp - q * newt;
temp = r;
r = newr;
newr = temp - q * newr;
}
if (r > 1)
return -1;
if (t < 0)
t += n;
return t;
}
// ElGamal签名
void elgamal_sign(int m, int *r, int *s, int x) {
int k = rand() % (p - 1) + 1; // 随机数k
*r = (int)pow(g, k) % p; // 计算r
*s = (m - x * (*r)) * inverse(k, p - 1) % (p - 1); // 计算s
}
// 验证ElGamal签名
bool elgamal_verify(int m, int r, int s, int y) {
int a1 = (int)pow(g, m) % p;
int a2 = (int)pow(y, r) * (int)pow(r, s) % p;
return a1 == a2;
}
int main() {
srand(time(NULL));
int m = 10, x = 7; // 消息和私钥
int r, s; // 签名参数
elgamal_sign(m, &r, &s, x); // 签名
cout << "r = " << r << endl;
cout << "s = " << s << endl;
int y = (int)pow(g, x) % p; // 计算公钥
bool valid = elgamal_verify(m, r, s, y); // 验证签名
cout << "Signature is " << (valid ? "valid" : "invalid") << endl;
return 0;
}
```
其中,main函数中的m和x分别为消息和私钥,elgamal_sign函数计算签名参数r和s,elgamal_verify函数验证签名的正确性。需要注意的是,本代码仅为ElGamal数字签名算法的简单实现,实际应用中需要考虑更多的安全性和效率问题。
大整数模rsa运算加解密代码用c语言或c++
以下是用C++实现的大整数模RSA运算加解密代码:
```c++
#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
class BigNum {
private:
int *num; // 存储大整数的数组
int size; // 数组大小
int sign; // 符号,1表示正数,-1表示负数
public:
BigNum() {
num = new int[1];
num[0] = 0;
size = 1;
sign = 1;
}
BigNum(const BigNum &b) {
num = new int[b.size];
memcpy(num, b.num, b.size * sizeof(int));
size = b.size;
sign = b.sign;
}
BigNum(string str) {
int len = str.length();
num = new int[len];
size = len;
if (str[0] == '-') {
sign = -1;
len--;
}
else {
sign = 1;
}
for (int i = 0; i < len; i++) {
num[i] = str[len - i - 1] - '0';
}
}
~BigNum() {
delete[] num;
}
void operator=(const BigNum &b) {
delete[] num;
num = new int[b.size];
memcpy(num, b.num, b.size * sizeof(int));
size = b.size;
sign = b.sign;
}
bool operator==(const BigNum &b) const {
if (sign != b.sign) {
return false;
}
if (size != b.size) {
return false;
}
for (int i = 0; i < size; i++) {
if (num[i] != b.num[i]) {
return false;
}
}
return true;
}
bool operator!=(const BigNum &b) const {
return !(*this == b);
}
bool operator>(const BigNum &b) const {
if (sign > b.sign) {
return true;
}
if (sign < b.sign) {
return false;
}
if (size > b.size) {
return true;
}
if (size < b.size) {
return false;
}
for (int i = size - 1; i >= 0; i--) {
if (num[i] > b.num[i]) {
return true;
}
if (num[i] < b.num[i]) {
return false;
}
}
return false;
}
bool operator<(const BigNum &b) const {
return !(*this > b || *this == b);
}
bool operator>=(const BigNum &b) const {
return !(*this < b);
}
bool operator<=(const BigNum &b) const {
return !(*this > b);
}
BigNum operator+(const BigNum &b) const {
if (sign != b.sign) {
return *this - b.sign * (-b);
}
BigNum res;
int len = max(size, b.size);
res.num = new int[len + 1];
memset(res.num, 0, (len + 1) * sizeof(int));
res.size = len;
res.sign = sign;
int carry = 0;
for (int i = 0; i < len; i++) {
int a = i < size ? num[i] : 0;
int b = i < b.size ? b.num[i] : 0;
int sum = a + b + carry;
res.num[i] = sum % 10;
carry = sum / 10;
}
if (carry > 0) {
res.num[len] = carry;
res.size = len + 1;
}
else {
res.size = len;
}
return res;
}
BigNum operator-(const BigNum &b) const {
if (sign != b.sign) {
return *this + b.sign * (-b);
}
if (sign == -1) {
return (-b) - (-*this);
}
if (*this < b) {
return -(b - *this);
}
BigNum res;
int len = max(size, b.size);
res.num = new int[len];
memset(res.num, 0, len * sizeof(int));
res.size = len;
res.sign = 1;
int borrow = 0;
for (int i = 0; i < len; i++) {
int a = i < size ? num[i] : 0;
int b = i < b.size ? b.num[i] : 0;
int diff = a - b - borrow;
if (diff >= 0) {
res.num[i] = diff;
borrow = 0;
}
else {
res.num[i] = diff + 10;
borrow = 1;
}
}
for (int i = len - 1; i >= 0; i--) {
if (res.num[i] == 0) {
res.size--;
}
else {
break;
}
}
if (res.size == 0) {
res.sign = 1;
}
return res;
}
BigNum operator*(const BigNum &b) const {
BigNum res;
res.num = new int[size + b.size];
memset(res.num, 0, (size + b.size) * sizeof(int));
res.size = size + b.size;
res.sign = sign * b.sign;
for (int i = 0; i < size; i++) {
for (int j = 0; j < b.size; j++) {
res.num[i + j] += num[i] * b.num[j];
}
}
for (int i = 0; i < res.size - 1; i++) {
res.num[i + 1] += res.num[i] / 10;
res.num[i] %= 10;
}
while (res.size > 1 && res.num[res.size - 1] == 0) {
res.size--;
}
return res;
}
BigNum operator/(const BigNum &b) const {
if (b == 0) {
exit(1);
}
if (*this == 0) {
return 0;
}
BigNum res;
BigNum a = abs(*this);
BigNum b1 = abs(b);
res.num = new int[a.size];
memset(res.num, 0, a.size * sizeof(int));
res.size = a.size;
res.sign = sign * b.sign;
BigNum cur(0);
for (int i = a.size - 1; i >= 0; i--) {
cur = cur * 10 + a.num[i];
int l = 0;
int r = 9;
while (l < r) {
int mid = (l + r + 1) / 2;
if (b1 * mid <= cur) {
l = mid;
}
else {
r = mid - 1;
}
}
res.num[i] = l;
cur -= b1 * l;
}
while (res.size > 1 && res.num[res.size - 1] == 0) {
res.size--;
}
return res;
}
BigNum operator%(const BigNum &b) const {
if (b == 0) {
exit(1);
}
if (*this == 0) {
return 0;
}
BigNum res;
BigNum a = abs(*this);
BigNum b1 = abs(b);
res.num = new int[b1.size];
memset(res.num, 0, b1.size * sizeof(int));
res.size = b1.size;
res.sign = sign;
for (int i = a.size - 1; i >= 0; i--) {
res = res * 10 + a.num[i];
res -= res / b1 * b1;
}
if (res.size == 0) {
res.sign = 1;
}
return res;
}
BigNum operator^(const BigNum &b) const {
BigNum res(1);
BigNum a = *this;
BigNum b1 = b;
while (b1 != 0) {
if (b1 % 2 == 1) {
res = res * a;
}
a = a * a;
b1 = b1 / 2;
}
return res;
}
BigNum abs() const {
BigNum res = *this;
res.sign = 1;
return res;
}
string to_string() const {
string res = "";
if (sign == -1) {
res += "-";
}
for (int i = size - 1; i >= 0; i--) {
res += num[i] + '0';
}
return res;
}
};
BigNum gcd(const BigNum &a, const BigNum &b) {
return b == 0 ? a : gcd(b, a % b);
}
bool is_prime(const BigNum &n) {
if (n < 2) {
return false;
}
if (n == 2) {
return true;
}
if (n % 2 == 0) {
return false;
}
BigNum d = n - 1;
while (d % 2 == 0) {
d = d / 2;
}
for (int i = 0; i < 10; i++) {
BigNum a = rand() % (n - 2) + 2;
BigNum x = a ^ d % n;
if (x == 1 || x == n - 1) {
continue;
}
bool flag = false;
for (int j = 0; j < d.size - 1; j++) {
x = x * x % n;
if (x == n - 1) {
flag = true;
break;
}
}
if (!flag) {
return false;
}
}
return true;
}
BigNum random_prime(int bits) {
srand(time(nullptr));
while (true) {
BigNum p;
p.num = new int[bits];
memset(p.num, 0, bits * sizeof(int));
p.size = bits;
p.sign = 1;
p.num[0] = rand() % 9 + 1;
for (int i = 1; i < bits; i++) {
p.num[i] = rand() % 10;
}
p.num[bits - 1] |= 1;
if (is_prime(p)) {
return p;
}
delete[] p.num;
}
}
BigNum mod_inverse(const BigNum &a, const BigNum &n) {
BigNum t(0);
BigNum r(n);
BigNum newt(1);
BigNum newr(a);
while (newr != 0) {
BigNum q = r / newr;
BigNum tmp = t - q * newt;
t = newt;
newt = tmp;
tmp = r - q * newr;
r = newr;
newr = tmp;
}
if (r > 1) {
exit(1);
}
if (t < 0) {
t = t + n;
}
return t;
}
BigNum rsa_encrypt(const BigNum &m, const BigNum &e, const BigNum &n) {
return m ^ e % n;
}
BigNum rsa_decrypt(const BigNum &c, const BigNum &d, const BigNum &n) {
return c ^ d % n;
}
int main() {
BigNum p = random_prime(512);
BigNum q = random_prime(512);
BigNum n = p * q;
BigNum phi = (p - 1) * (q - 1);
BigNum e = 65537;
BigNum d = mod_inverse(e, phi);
string message = "Hello, world!";
BigNum m(message);
BigNum c = rsa_encrypt(m, e, n);
BigNum m1 = rsa_decrypt(c, d, n);
cout << "Message: " << message << endl;
cout << "Encrypted: " << c.to_string() << endl;
cout << "Decrypted: " << m1.to_string() << endl;
return 0;
}
```
在这个代码中,我们定义了一个`BigNum`类,用于处理大整数运算。这个类支持加、减、乘、除、幂运算,以及比较大小、取绝对值、转换为字符串等操作。
我们还定义了一个`gcd`函数,用于计算两个大整数的最大公约数,以及一个`is_prime`函数,用于判断一个大整数是否为质数。在实现`is_prime`函数时,我们使用了Miller-Rabin算法,这是一种常用的质数测试算法。
最后,我们实现了RSA加密和解密算法,通过调用`rsa_encrypt`和`rsa_decrypt`函数,可以对一个字符串进行加密和解密。在这个例子中,我们使用了512位的质数p和q,以及65537作为加密指数e。
阅读全文