double thresh = Cv2.Threshold(roiMat, new Mat(), 0, 255, ThresholdTypes.Binary | (isJudgeByGreatThan ? ThresholdTypes.Otsu : ThresholdTypes.OtsuInv));中opencvsharp4.6中没 ThresholdTypes.OtsuInv有

时间: 2024-04-28 13:23:34 浏览: 6
你好!对于opencvsharp 4.6版本,ThresholdTypes枚举中并没有OtsuInv选项,只有Binary、BinaryInv、Trunc、Tozero、TozeroInv、Mask和Triangle。如果你需要使用OtsuInv阈值类型,可以考虑升级到更高的版本或者使用其他的库。另外,对于二值化阈值的选择,Otsu方法是一种自适应的阈值选择方法,它可以根据图像的灰度分布自动选择最佳阈值,因此在处理一些复杂的图像时,可以考虑使用Otsu方法。
相关问题

double thresh = Cv2.Threshold(roiMat, new Mat(), 0, 255, ThresholdTypes.Binary | (isJudgeByGreatThan ? ThresholdTypes.Otsu : ThresholdTypes.OtsuInv));请解析

好的,下面我来对这段代码进行解析: ```csharp double thresh = Cv2.Threshold(roiMat, new Mat(), 0, 255, ThresholdTypes.Binary | (isJudgeByGreatThan ? ThresholdTypes.Otsu : ThresholdTypes.OtsuInv)); ``` 这段代码使用了OpenCVSharp库中的Threshold方法来进行二值化处理。具体来说,它的参数含义如下: - `roiMat`:需要进行二值化处理的输入图像区域。 - `new Mat()`:输出的二值化图像,可以为空。 - `0`:二值化的阈值,如果使用了Otsu方法,则该值会被忽略。 - `255`:二值化后像素值的上限,通常为255。 - `ThresholdTypes.Binary | (isJudgeByGreatThan ? ThresholdTypes.Otsu : ThresholdTypes.OtsuInv)`:二值化的类型,其中`ThresholdTypes.Binary`表示普通二值化,`isJudgeByGreatThan ? ThresholdTypes.Otsu : ThresholdTypes.OtsuInv`表示使用Otsu方法进行阈值自适应选择,如果`isJudgeByGreatThan`为`true`,则表示选择大于阈值的像素点作为前景,否则选择小于阈值的像素点作为前景。 最终,该方法会返回一个阈值`thresh`,可以根据这个阈值进行后续处理。 需要注意的是,在你提供的代码中,使用的是`ThresholdTypes.OtsuInv`阈值类型,但是在OpenCVSharp库的4.6版本中并没有该类型,因此代码可能会出现编译错误。对于没有该类型的库,可以考虑使用其他方法来实现类似的效果,比如上面我提到的反相图像方法。

import numpy as np import cv2 as cv # 加载图片 img = cv.imread('4.jpg') # 灰度化 img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 二值化 ret, thresh = cv.threshold(img_gray, 127, 255, cv.THRESH_BINARY) # 寻找连通域 num_labels, labels, stats, centroids = cv.connectedComponentsWithStats(thresh, connectivity=8) # 计算平均面积 areas = list() for i in range(num_labels): areas.append(stats[i][-1]) print("轮廓%d的面积:%d" % (i, stats[i][-1])) area_avg = np.average(areas[1:-1]) print("轮廓平均面积:", area_avg) # 筛选超过平均面积的连通域 image_filtered = np.zeros_like(img) for (i, label) in enumerate(np.unique(labels)): # 如果是背景,忽略 if label == 0: continue if stats[i][-1] < area_avg : image_filtered[labels == i] = 255 #cv.imshow("image_filtered", image_filtered) #cv.imshow("img", img) cv.imwrite('4.jpg',image_filtered ) cv.waitKey() cv.destroyAllWindows(),将上述代码转化为c++形式

以下是将上述Python代码转化为C++形式的示例: ```cpp #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; int main() { // 加载图片 Mat img = imread("4.jpg"); // 灰度化 Mat img_gray; cvtColor(img, img_gray, COLOR_BGR2GRAY); // 二值化 Mat thresh; threshold(img_gray, thresh, 127, 255, THRESH_BINARY); // 寻找连通域 Mat labels, stats, centroids; int num_labels = connectedComponentsWithStats(thresh, labels, stats, centroids, 8); // 计算平均面积 vector<int> areas; for (int i = 0; i < num_labels; i++) { areas.push_back(stats.at<int>(i, CC_STAT_AREA)); cout << "轮廓" << i << "的面积:" << stats.at<int>(i, CC_STAT_AREA) << endl; } double area_avg = mean(Mat(areas))[0]; cout << "轮廓平均面积:" << area_avg << endl; // 筛选超过平均面积的连通域 Mat image_filtered = Mat::zeros(img.size(), CV_8UC1); for (int i = 1; i < num_labels; i++) { if (stats.at<int>(i, CC_STAT_AREA) < area_avg) { labels.setTo(0, labels == i); } else { image_filtered.setTo(255, labels == i); } } // 显示结果 imshow("image_filtered", image_filtered); imshow("img", img); waitKey(); destroyAllWindows(); // 保存结果 imwrite("4.jpg", image_filtered); return 0; } ``` 需要注意的是,C++中没有Python中的`list`类型,需要使用`vector`替代。同时,C++中没有Python中的`np.average()`方法,需要使用OpenCV的`mean()`方法计算平均值。此外,C++中的Mat类需要使用`.at()`方法访问元素,而不是Python中的下标索引。

相关推荐

import cv2 import math def cal_ang(start, center, end): point_1 = start point_2 = center point_3 = end a = math.sqrt( (point_2[0] - point_3[0]) * (point_2[0] - point_3[0]) + (point_2[1] - point_3[1]) * (point_2[1] - point_3[1])) b = math.sqrt( (point_1[0] - point_3[0]) * (point_1[0] - point_3[0]) + (point_1[1] - point_3[1]) * (point_1[1] - point_3[1])) c = math.sqrt( (point_1[0] - point_2[0]) * (point_1[0] - point_2[0]) + (point_1[1] - point_2[1]) * (point_1[1] - point_2[1])) A = math.degrees(math.acos((a * a - b * b - c * c) / (-2 * b * c))) B = math.degrees(math.acos((b * b - a * a - c * c) / (-2 * a * c))) C = math.degrees(math.acos((c * c - a * a - b * b) / (-2 * a * b))) return B img = cv2.imread('46.png') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(gray, 70, 255, cv2.THRESH_BINARY) contours,hierarchy=cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) hull = cv2.convexHull(contours[0],returnPoints=False) defects = cv2.convexityDefects(contours[0],hull) start = end = (0,0) for i in range(0,defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(contours[0][s][0]) end = tuple(contours[0][e][0]) far = tuple(contours[0][f][0]) if d > 5000: cv2.line(img,start,end,[0,255,0],2) cv2.circle(img,end,5,[0,0,255],-1) cv2.circle(img,start,5,[0,0,255],-1) break cv2.imshow('find', img) center,radius = cv2.minEnclosingCircle(contours[0]) cv2.circle(img,(int(center[0]),int(center[1])),8,(255,0,255),-1) cv2.circle(img,end,8,[255,0,0],-1) cv2.circle(img,start,8,[255,0,0],-1) cv2.line(img,start,(int(center[0]),int(center[1])),[0,0,255],2) cv2.line(img,end,(int(center[0]),int(center[1])),[0,0,255],2) angle = cal_ang(start,center,end) print('angle = %0.2f' % angle) length = (1 - angle / 360.0) * math.pi * radius * 2 print((angle / 360.0)) print('radius = %0.2f' % radius) strL = 'length=%0.2f' % length cv2.putText(img,strL,(int(center[0]-40),int(center[1]+40)),0,0.8,(0,255,0),2) cv2.imshow('result', img) angle_1 = cal_ang(start, center, ((center[0]+100),(center[1]))) angle_2 = cal_ang(end, center, ((center[0]+100),(center[1]))) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,-angle_1,0,(255,0,255),2, cv2.LINE_AA) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,0,angle_2,(255,0,255),2,cv2.LINE_AA) cv2.imshow('result', img) cv2.imwrite('result.png',img) cv2.waitKey(0) cv2.destroyAllWindows(),将这段代码转换为c++

#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { int startf = 39, endf = 512; // 视频帧的起始和结束帧号 // 读入背景图像 Mat Ibj = imread("D://yanyi//opencv//test//opencv1//BackgroundFrame.jpg", IMREAD_GRAYSCALE); for (int i = startf; i <= endf; i++) // 遍历视频帧 { // 读入当前视频帧并转化为灰度图像 Mat I1 = imread("frame" + to_string(i) + ".jpg"); Mat gray; cvtColor(I1, gray, COLOR_BGR2GRAY); // 将灰度图像转换为双精度浮点型并减去背景图像 gray.convertTo(gray, CV_64F); gray -= Ibj; // 对图像进行二值化处理 Mat bw1; threshold(gray, bw1, 25, 255, THRESH_BINARY); // 对二值化图像进行形态学开运算 Mat bwAreaOpenBW; morphologyEx(bw1, bwAreaOpenBW, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(3, 3))); // 对二值化图像进行连通组件分析 Mat labels; if (bwAreaOpenBW.depth() != CV_8U && bwAreaOpenBW.depth() != CV_8S) { bwAreaOpenBW.convertTo(bwAreaOpenBW, CV_8U); // or CV_8S } int n = connectedComponents(bwAreaOpenBW, labels, 8, CV_16U); // 遍历每一个连通组件 for (int j = 1; j < n; j++) { // 提取连通组件中的像素点 Mat mask = labels == j; vector points; findNonZero(mask, points); // 构建矩阵并求解线性方程组 Mat X(points.size(), 2, CV_64F); for (int k = 0; k < points.size(); k++) { X.at<double>(k, 0) = points[k].x; X.at<double>(k, 1) = points[k].y; } Mat Y(points.size(), 1, CV_64F); for (int k = 0; k < points.size(); k++) { Y.at<double>(k, 0) = points[k].y; } Mat coef; solve(X, Y, coef, DECOMP_SVD); // 计算轴的两个端点的坐标 double b1 = coef.at<double>(0, 0); double b2 = coef.at<double>(1, 0); double minzhi = points[0].x; double maxzhi = points[0].x; for (int k = 1; k < points.size(); k++) { if (points[k].x < minzhi) { minzhi = points[k].x; } if (points[k].x > maxzhi) { maxzhi = points[k].x; } } double duan1x = b1 + b2 * minzhi; double duan1y = minzhi; double duan2x = b1 + b2 * maxzhi; double duan2y = maxzhi; // 在图像上绘制轴的两个端点 circle(I1, Point(duan1x, duan1y), 3, Scalar(0, 0, 255), -1); circle(I1, Point(duan2x, duan2y), 3, Scalar(0, 0, 255), -1); } // 显示处理结果并等待用户按键 imshow("result", I1); waitKey(1); } return 0; }没有绘制出端点是怎么回事

最新推荐

recommend-type

基于Python的蓝桥杯竞赛平台的设计与实现

【作品名称】:基于Python的蓝桥杯竞赛平台的设计与实现 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Python的蓝桥杯竞赛平台的设计与实现
recommend-type

python实现基于深度学习TensorFlow框架的花朵识别项目源码.zip

python实现基于深度学习TensorFlow框架的花朵识别项目源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望