# 筛选异常值 outlier=data[~data['unix_time'].astype('str').str.match(pattern)]
时间: 2024-01-19 13:02:18 浏览: 137
好的,让我解释一下这段代码的作用。首先,这段代码假设有一个名为`data`的数据集,其中包含一个名为`unix_time`的列。这列数据是时间戳,但有些行可能包含异常值。为了筛选出这些异常值,代码中使用了正则表达式来匹配不符合特定格式的时间戳。
具体来说,`astype('str')`将`unix_time`列中的值转换为字符串类型,然后`str.match(pattern)`使用正则表达式`pattern`来匹配字符串中是否符合特定格式。最后,`~`符号表示取反,即找出不符合特定格式的行。这些行将被存储在`outlier`变量中。
相关问题
for fea in numerical_fea: data_train = data_train[data_train[fea+'_outliers']=='正常值'] data_train = data_train.reset_index(drop=True)
This code snippet loops over the numerical features in a dataset and filters out any rows where the feature's outlier status is labeled as "正常值" (which likely means "normal value" in Chinese). The filtered dataset is then reset so that the row indices are sequential.
It's possible that the dataset has been preprocessed prior to this code being run, with a separate step that identifies and labels outliers for each numerical feature. Without knowing more about the dataset and the preprocessing steps, it's hard to say exactly what this code is doing or what the purpose of filtering out outliers might be.
df = data[tot_feature].dropna() feature_list = random_subspace(tot_feature, no_of_subspaces, min_features, max_features) outlier_labels = pd.DataFrame(index=df.index) model = LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, n_jobs=-1) for i in range(no_of_subspaces): df_temp = df[feature_list[i]] y_pred = model.fit_predict(df_temp) outlier_labels[str("Model " + str(i + 1))] = pd.DataFrame(y_pred, index=df.index) outlier_labels["Total"] = outlier_labels.sum(axis=1) labels = [] for i in outlier_labels["Total"]: if i < 0: labels.append("Outlier") else: labels.append("Inlier") df['label'] = pd.DataFrame(labels, index=df.index) data['label'] = df['label'] data['label'] = data['label'].replace(np.nan, "Undetermined") if separate_df: outlier_df = df.loc[df[df["label"] == "Outlier"].index].drop(['label'], axis=1) inlier_df = df.loc[df[df["label"] == "Inlier"].index].drop(['label'], axis=1) print(df[df["label"] == "Outlier"].index) return (outlier_df,inlier_df)什么原因是
这段代码的作用是使用局部离群因子(Local Outlier Factor,LOF)算法对数据进行异常检测,并将结果标记为“Outlier”或“Inlier”。具体来说,该代码首先从数据中选择一些特征组成多个子空间,然后在每个子空间中使用LOF算法进行异常检测。最后,将所有子空间的结果进行累加,得到每个数据点的总异常分数,如果总异常分数小于0,则将该数据点标记为“Outlier”,否则标记为“Inlier”。
这段代码中出现错误的原因不太清楚,需要更多的上下文信息才能确定具体原因。
阅读全文