编写一个完整的代码用matlab实现左刀补和右刀补直线转接直线

时间: 2024-02-15 15:04:42 浏览: 51
好的,下面是Matlab代码实现左刀补和右刀补直线转接直线的功能: ```matlab % 左刀补和右刀补直线转接直线 % 定义刀具半径 r = 2; % 定义直线起点和终点 x1 = 0; y1 = 0; x2 = 10; y2 = 5; % 计算直线斜率 k = (y2 - y1) / (x2 - x1); % 计算直线夹角 theta = atan(k); % 计算切线向量 t = [cos(theta), sin(theta)]; % 计算法线向量 n = [sin(theta), -cos(theta)]; % 计算刀具中心点坐标 c1 = [x1, y1] - r * n; c2 = [x1, y1] + r * n; % 计算左刀补路径点坐标 xl1 = c1 + r * t; xl2 = c2 + r * t; % 计算右刀补路径点坐标 xr1 = c1 - r * t; xr2 = c2 - r * t; % 绘制路径 plot([x1, xl1(1), xl2(1), x2], [y1, xl1(2), xl2(2), y2], 'r'); hold on; plot([x1, xr1(1), xr2(1), x2], [y1, xr1(2), xr2(2), y2], 'b'); axis equal; ``` 这段代码实现了左刀补和右刀补直线转接直线的功能,其中包括了刀具半径、直线起点和终点的定义,以及计算刀具中心点、左刀补和右刀补路径点坐标的过程,最后通过绘图将路径可视化。
相关问题

编写一个完整的程序用matlab使用左刀补和右刀补实现直线转接直线。要求:伸长型,缩短型,插入型都要考虑。

以下是一个matlab程序,可以用左刀补和右刀补实现直线转接直线: ``` % 定义直线段的起点、终点、方向向量 p1 = [0 0]; p2 = [5 0]; v1 = (p2 - p1) / norm(p2 - p1); p3 = [7 3]; p4 = [7 0]; v2 = (p4 - p3) / norm(p4 - p3); % 求出左刀补和右刀补的方向向量 theta = acos(dot(v1,v2)); u1 = (v1 + v2) / norm(v1 + v2); u2 = (v1 - v2) / norm(v1 - v2); u3 = [cos(theta/2) -sin(theta/2); sin(theta/2) cos(theta/2)] * v1'; % 计算左刀补和右刀补的转接点 l1 = p2 - u1 * h; l2 = p2 - u2 * h; l3 = p2 + u3 * h; % 计算左刀补和右刀补的直线段 q1 = [l1; p3 - u1 * h]; q2 = [l2; p3 - u2 * h]; q3 = [l3; p3 - u3 * h]; % 绘制图形 plot([p1(1) p2(1)], [p1(2) p2(2)], 'k-', 'linewidth', 2); hold on; plot([p3(1) p4(1)], [p3(2) p4(2)], 'k-', 'linewidth', 2); plot(q1(:,1), q1(:,2), 'r--', 'linewidth', 1); plot(q2(:,1), q2(:,2), 'g--', 'linewidth', 1); plot(q3(:,1), q3(:,2), 'b--', 'linewidth', 1); axis equal; ``` 其中,p1、p2、v1分别表示第一个直线段的起点、终点和方向向量;p3、p4、v2分别表示第二个直线段的起点、终点和方向向量;h为圆弧半径。程序中分别计算了左刀补和右刀补的方向向量,然后计算出转接点的位置,最后根据转接点和第二个直线段的起点终点计算出左刀补和右刀补的直线段。最后使用plot函数绘制图形,其中黑色实线表示原始的两个直线段,红色、绿色和蓝色虚线分别表示左刀补、右刀补和插入型的转接段。

编写一个完整的程序可以通过键盘输入坐标用matlab使用左刀补和右刀补实现直线转接直线。要求:伸长型,缩短型,插入型都要考虑。

好的,以下是一个简单的 MATLAB 程序,实现了通过键盘输入坐标,使用左刀补和右刀补实现直线转接直线的功能。程序中考虑了伸长型、缩短型和插入型的情况。 ```matlab % 通过键盘输入坐标,使用左刀补和右刀补实现直线转接直线 % 输入直线起点和终点坐标 x1 = input('请输入直线起点横坐标:'); y1 = input('请输入直线起点纵坐标:'); x2 = input('请输入直线终点横坐标:'); y2 = input('请输入直线终点纵坐标:'); % 计算直线的斜率和长度 k = (y2 - y1) / (x2 - x1); l = sqrt((x2 - x1)^2 + (y2 - y1)^2); % 输入左刀补和右刀补值 left_tool = input('请输入左刀补值:'); right_tool = input('请输入右刀补值:'); % 输入转角处的坐标 x3 = input('请输入转角处横坐标:'); y3 = input('请输入转角处纵坐标:'); % 计算直线起点到转角处的距离 d1 = sqrt((x3 - x1)^2 + (y3 - y1)^2); % 根据刀补值计算左右两侧的距离 left_distance = left_tool + d1; right_distance = right_tool + d1; % 判断转角处的情况 if x3 > x2 % 伸长型 % 计算直线终点到转角处的距离 d2 = sqrt((x3 - x2)^2 + (y3 - y2)^2); % 计算伸长型时需要的参数 a = atan(k); b = atan(right_distance / d2); c = a - b; d = sqrt(right_distance^2 + d2^2); % 计算新的终点坐标 x2_new = x2 + d * cos(c); y2_new = y2 + d * sin(c); % 输出结果 fprintf('伸长型:新的终点坐标为 (%.2f, %.2f)\n', x2_new, y2_new); elseif x3 < x1 % 缩短型 % 计算直线起点到转角处的距离 d3 = sqrt((x3 - x1)^2 + (y3 - y1)^2); % 计算缩短型时需要的参数 a = atan(k); b = atan(left_distance / d3); c = a + b; d = sqrt(left_distance^2 + d3^2); % 计算新的起点坐标 x1_new = x1 - d * cos(c); y1_new = y1 - d * sin(c); % 输出结果 fprintf('缩短型:新的起点坐标为 (%.2f, %.2f)\n', x1_new, y1_new); else % 插入型 % 计算插入型时需要的参数 a = atan(k); b = atan(left_distance / d1); c = a + b; d = sqrt(left_distance^2 + d1^2); % 计算新的起点坐标 x1_new = x1 - d * cos(c); y1_new = y1 - d * sin(c); % 计算插入型时需要的参数 a = atan(k); b = atan(right_distance / (l - d1)); c = a - b; d = sqrt(right_distance^2 + (l - d1)^2); % 计算新的终点坐标 x2_new = x2 + d * cos(c); y2_new = y2 + d * sin(c); % 输出结果 fprintf('插入型:新的起点坐标为 (%.2f, %.2f),新的终点坐标为 (%.2f, %.2f)\n', x1_new, y1_new, x2_new, y2_new); end ``` 使用方法: 1. 运行程序后,按照提示输入直线起点和终点的坐标、左刀补和右刀补的值、转角处的坐标。 2. 程序会根据输入的数据判断转角处的情况(伸长型、缩短型或插入型),并计算出新的起点和终点的坐标。 3. 程序会输出新的起点和终点的坐标。

相关推荐

最新推荐

recommend-type

腐蚀和膨胀的matlab实现

我们可以使用MATLAB的ONES函数来创建一个结构元素,然后使用一个双重循环来遍历每个像素。如果某个像素的邻域内所有像素的值都为1,则将该像素设置为1,否则设置为0。最后,我们可以使用imshow函数来显示腐蚀后的...
recommend-type

RNN实现的matlab代码

在这个示例代码中,我们使用Matlab实现了一个基本的RNN算法,用于实现简单的加法操作。 代码解析 首先,我们定义了一些参数,例如输入维度、隐藏层维度、输出维度等。然后,我们生成了一个训练数据集,用于训练RNN...
recommend-type

骨架提取和交叉点检测的matlab实现

在这个实现中,我们使用MATLAB语言来实现骨架提取和交叉点检测的算法。 首先,我们需要读取图像文件,并将其转换为灰度图像。在MATLAB中,我们可以使用`imread`函数来读取图像文件,并使用`size`函数来获取图像的...
recommend-type

用fft算法实现相关的MATLAB仿真

2. MATLAB中的FFT函数:MATLAB提供了一个名为“fft”的函数,可以用于实现快速傅里叶变换。该函数可以将时域信号转换为频域信号,并且可以指定信号的长度和采样率等参数。 3. 相关算法的实现:在MATLAB中,可以使用...
recommend-type

公交线路查询问题及matlab代码实现

"公交线路查询问题及MATLAB代码实现" 公交线路查询问题是指在公交线路网中,从起始站s1到终到站s2之间,寻找最佳线路的问题。该问题可以通过设计一个查询算法来解决,算法的核心是线路选择问题,需要找出所有的可行...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。