j=sqrt(-1); x=2;y=0.4; bluecircle=cos(-pi:pi/20:pi)+j*sin(-pi:pi/20:pi)+(j*y-x); blackcircle=cos(-pi:pi/20:pi)+j*sin(-pi:pi/20:pi)+(j*y); redcircle=cos(-pi:pi/20:pi)+j*sin(-pi:pi/20:pi)+(j*y+x); yellowcircle=cos(-pi:pi/20:pi)+j*sin(-pi:pi/20:pi)+(-j*y-x/2); greencircle=cos(-pi:pi/20:pi)+j*sin(-pi:pi/20:pi)+(-j*y+x/2); figure(1) plot(bluecircle,'LineWidth',5);hold on; plot(blackcircle,'k','LineWidth',5);hold on; plot(redcircle,'r','LineWidth',5);hold on; plot(yellowcircle,'y','LineWidth',5);hold on; plot(greencircle,'g','LineWidth',5);hold on;
时间: 2024-04-20 19:26:37 浏览: 176
这段代码是用于绘制五个不同颜色的圆形图形。其中使用了复数来表示圆上的点,通过调整不同的参数来实现位置和颜色的变化。代码中的j=sqrt(-1)是用来定义虚数单位。x和y分别表示圆心的x坐标和y坐标。
bluecircle表示一个蓝色圆形,其圆心为(j*y-x),半径为1,绘制了从-pi到pi的点,并使用plot函数绘制。
类似地,blackcircle、redcircle、yellowcircle和greencircle分别表示黑色、红色、黄色和绿色的圆形,绘制方式与bluecircle相似。
最后,figure(1)用于创建一个新的图形窗口,并使用plot函数将所有的圆形绘制在同一个图形上。
请问还有什么需要帮助的吗?
相关问题
不使用function改写这段代码 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.*cos(2*pi*f0*t)+HX.*sin(2*pi*f0*t); As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t); Ph=atan(As./Ac); A2=Ac.*Ac+As.*As; At=sqrt(A2); function X=Narrowbandsignal(N,f0,delt,fs,M) N1=N-M; xt=random(1,N1); f1=f0*2/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X/max(abs(X)); return N=10000;f0=10000;delt=400;fs=22000;M=50; al=2;a2=4;a3=8; sitl=pi/6;sit2=pi/4;sit3=pi/3 X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2*pi*f0*t+sitl); X2=X+a2cos(2*pi*f0*t+sit2); X3=X+a3cos(2*pi*f0*t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histogram(Atl, LA); GA2=histogram(At2, LA); GA3=histogram(At3, LA); plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'–'); title('包络的分布直方图'); figure; LP=-pi/2:0.05:pi/2; GP1=histogram((Ph1-sitl),LP); GP2=histogram((Ph2-sit2),LP); GP3=histogram((Ph3-sit3),LP); plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'–'); title('相位的分布直方图'); figure; LA2=0:1:120; GA21=histogram(A21,LA2); GA22=histogram(A22,LA2); GA23=histogram(A23,LA2); plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'–'); title('包络平方值的分布直方图');
以下不使用 `function` 的改写代码:
```
N = 10000;
f0 = 10000;
delt = 400;
fs = 22000;
M = 50;
al = 2;
a2 = 4;
a3 = 8;
sitl = pi/6;
sit2 = pi/4;
sit3 = pi/3;
% 生成窄带信号
N1 = N-M;
xt = rand(1, N1);
f1 = f0*2/fs;
df = delt/fs;
ht = fir1(M, [f1-df f1+df]);
X = conv(xt, ht);
X = X/max(abs(X));
t = 0:1/fs:((N-1)/fs);
% 生成三个幅度不同的信号
X1 = X + al*cos(2*pi*f0*t+sitl);
X2 = X + a2*cos(2*pi*f0*t+sit2);
X3 = X + a3*cos(2*pi*f0*t+sit3);
% 计算三个信号的包络和相位
HX1 = imag(hilbert(X1));
Ac1 = X1.*cos(2*pi*f0*t) + HX1.*sin(2*pi*f0*t);
As1 = HX1.*cos(2*pi*f0*t) - X1.*sin(2*pi*f0*t);
Ph1 = atan2(As1, Ac1);
A21 = Ac1.*Ac1 + As1.*As1;
Atl = sqrt(A21);
HX2 = imag(hilbert(X2));
Ac2 = X2.*cos(2*pi*f0*t) + HX2.*sin(2*pi*f0*t);
As2 = HX2.*cos(2*pi*f0*t) - X2.*sin(2*pi*f0*t);
Ph2 = atan2(As2, Ac2);
A22 = Ac2.*Ac2 + As2.*As2;
At2 = sqrt(A22);
HX3 = imag(hilbert(X3));
Ac3 = X3.*cos(2*pi*f0*t) + HX3.*sin(2*pi*f0*t);
As3 = HX3.*cos(2*pi*f0*t) - X3.*sin(2*pi*f0*t);
Ph3 = atan2(As3, Ac3);
A23 = Ac3.*Ac3 + As3.*As3;
At3 = sqrt(A23);
% 画图
LA = 0:0.4:12;
GA1 = histogram(Atl, LA);
GA2 = histogram(At2, LA);
GA3 = histogram(At3, LA);
plot(LA, GA1, ':', LA, GA2, '-', LA, GA3, '–');
title('包络的分布直方图');
figure;
LP = -pi/2:0.05:pi/2;
GP1 = histogram((Ph1-sitl), LP);
GP2 = histogram((Ph2-sit2), LP);
GP3 = histogram((Ph3-sit3), LP);
plot(LP, GP1, ':', LP, GP2, '-', LP, GP3, '–');
title('相位的分布直方图');
figure;
LA2 = 0:1:120;
GA21 = histogram(A21, LA2);
GA22 = histogram(A22, LA2);
GA23 = histogram(A23, LA2);
plot(LA2, GA21, ':', LA2, GA22, '-', LA2, GA23, '–');
title('包络平方值的分布直方图');
```
注意,这里直接使用了幅度和相位的计算公式,没有对其进行封装成函数。同时,为了避免变量名重复,对原先函数中的 `N` 进行了修改,改为 `N1`。
改进这段的代码 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); t=0:1/fs:((length(X)-1)/fs); Ac=X.cos(2*pi*f0*t)+HX.sin(2*pi*f0*t); As=HX.cos(2*pi*f0*t)-X.sin(2*pi*f0*t); Ph=atan2(As,Ac); A2=Ac.^2+As.^2; At=sqrt(A2); end function X=Narrowbandsignal(N,f0,delt,fs,M) N1=N-M; xt=randn(1,N1); f1=f0*2/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X(1:N); end N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2pif0t+sitl); X2=X+a2cos(2pif0t+sit2); X3=X+a3cos(2pif0t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histcounts(Atl, LA); GA2=histcounts(At2, LA); GA3=histcounts(At3, LA); figure; plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title('包络的分布直方图'); LP=-pi/2:0.05:pi/2; GP1=histcounts((Ph1-sitl),LP); GP2=histcounts((Ph2-sit2),LP); GP3=histcounts((Ph3-sit3),LP); figure; plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title('相位的分布直方图'); LA2=0:1:120; GA21=histcounts(A21,LA2); GA22=histcounts(A22,LA2); GA23=histcounts(A23,LA2); figure; plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'--'); title('包络平方值的分布直方图');
在这段代码中,有一些错误需要进行改进:
1. 在 EnvelopPhase 函数中,Ac 和 As 的计算存在错误,应该改为:
```
Ac = X .* cos(2*pi*f0*t) + HX .* sin(2*pi*f0*t);
As = HX .* cos(2*pi*f0*t) - X .* sin(2*pi*f0*t);
```
2. 在 Narrowbandsignal 函数中,ht 的计算存在错误,应该改为:
```
ht = fir1(M, [f1-df, f1+df], 'bandpass');
```
3. 在主函数中,alcos 函数不存在,应该改为:
```
X1 = X + al*cos(2*pi*f0*t+sitl);
```
4. 在主函数中,histcounts 函数用法存在错误,应该改为:
```
[GA1, ~] = histcounts(Atl, LA);
[GA2, ~] = histcounts(At2, LA);
[GA3, ~] = histcounts(At3, LA);
[GP1, ~] = histcounts((Ph1-sitl), LP);
[GP2, ~] = histcounts((Ph2-sit2), LP);
[GP3, ~] = histcounts((Ph3-sit3), LP);
[GA21, ~] = histcounts(A21,LA2);
[GA22, ~] = histcounts(A22,LA2);
[GA23, ~] = histcounts(A23,LA2);
```
经过上述修改,代码应该可以正确运行。
阅读全文